
Dynamic Facility Location : Minimizing Sum of Radii

Nicolas K. Blanchard, supervised by Nicolas Schabanel, LIAFA

August 21, 2015

General Context

In the past few years the increased study of social networks of different sorts has given rise to large
databases with not just static but also dynamic information. The interactions of individuals in a
hospital for example are strongly dependent on time, and clustering techniques can help understand
the dynamics of those networks. Organizing this data could have many applications, from epidemi-
ology to marketing and urban planning. A possible modelization for this is via the Facility Location
problem. The first setting in which this model was studied was for a warehouse locating situation
with a heuristic first published in 1963 [KH76], in the static case. Since then it has become an
important subject of research covered by hundreds of publications. Many different subcases exist
depending on whether we have an evolution of the network (dynamic) or not, on how exactly the
cost function behaves, on the structure of the underlying space (euclidean, metric, non-metric), and
on other parameters. Most of those can be proved to be NP-complete so the main goal is finding ap-
proximation algorithms. Several constant factor approximation algorithms already exist in different
settings.

Problem Studied

The Facility Location problem consists of assigning a set of n clients C to a set ofm services F so that
every client is served. Although the problem is NP-complete and APX-hard, some optimal bounds
have been found, O(log n) in the general (non-metric) case and O(1) in the metric case (where
distances follow the triangle inequality). As opposed to the static model which has been extensively
studied, the dynamic model is still partially unexplored – this model has the added complexity of
having distances which vary through time as well as additional costs when clients change facilities.
We introduce a variant of the classical setting, where the connection cost is the sum of the radii1

of facilities instead of the sum of the distances between clients and facilities. This second variant
is a natural expansion of the problem and had received less attention until now. The aim of this
internship was to study it and come up with algorithms and approximation hardness results.

Proposed Contributions

This internship yielded four results. First, we proved (Theorem 1, page 8) that the Dynamic Facility
Location with Radius (DFLR) problem in the general, non-metric case, cannot be approximated
within a factor (1− o(1)) log n unless P = NP. Second, we design and prove an algorithm working
in expected polynomial time (O(nm(n + m)1/2)) which gives a 2 log n approximation for DFLR in
the non-metric case, and show that this method can be adapted to an algorithm from [EMS14]
to obtain an O(log n) approximation for non-metric DFL without radii (down from their original
O(log nT)). For the sum of distances between facilities and clients the algorithm present in [ANS14]
achieves a constant approximation in the metric case. We show (Theorem 5, page 17) that the
natural adaptation to the sum of radii has an approximation ratio at least Ω(log logn). Our proof is
based on a combinatorial lemma dealing with permutations in trees which is of independent interest.

1 The radius is the distance to its farthest client

1

Arguments Supporting Their Validity

As opposed to using many static snapshots of the network and reconciling them, DFL has been
shown to capture more closely the essence of a network’s structure. With the sum of radii costs,
this can be extended to problems where a sum of distances cost function makes little sense. For
instance, with sum of distances as costs, a good solution can tolerate having one client making a
big mistake without impacting the quality of the solution (as the client is just one in many), but
in the radius setting a single such mistake can increase drastically the final cost, which means that
efficient algorithms to solve it might be quite useful in settings with no error tolerance. We provide
formal proofs for all our results, although we do present one algorithm for which we could not yet
find any guaranteed upper bound.

Summary and Future Work

This work gives asymptotically optimal results for non-metric DFL problems in both settings, leaving
open only the dynamic sum of radii setting. Although we provide an algorithm, we could not get any
guarantee on its approximation ratio aside from a lower bound. The next steps would be to prove an
upper bound for it, and either adapt it or find another way to get a constant factor approximation
for that problem. If this were to succeed, getting the APX-hardness result would be the last step to
show that all the algorithms in this field are asymptotically optimal.

Contents

1 Problem and State of the art 3
1.1 The Facility Location Problem . 3
1.2 Completeness results . 4
1.3 Existing algorithms . 4

2 Non-Metric Dynamic Facility Location with Sum of Radii Cost 8
2.1 Inapproximability . 8
2.2 Asymptotically optimal approximation algorithm . 8
2.3 Application to the non-metric sum of distances problem 10

3 Metric Dynamic Facility Location with Sum of Radii Cost 11
3.1 Modified ANS Algorithm . 11
3.2 Lower bound for the modified ANS algorithm . 11

4 Conclusion 19

References 20

5 Appendix 21
5.1 Preprocessing . 21
5.2 Forcing the LP to find a mixed solution . 21
5.3 Better bound for Theorem 2 . 22
5.4 Better bounds for Lemma 1 . 23

2

1 Problem and State of the art

1.1 The Facility Location Problem2

The problem studied in this report is a special case of Facility Location (FL), itself a sort of clustering
with additional constraints. Facility Location has been shown to be very efficient for clustering,
in particular when the ideal number of clusters is not known in advance. As such, we have an
environment with individuals (clients), a set of services (facilities), and we are trying to link each
client to a service so that every client is served, while minimizing the costs. We have the following:

• A finite set of n clients C

• A finite set of m facilities F

• A finite ordered set of T time steps T

• A function d indicating the distances between each pair (i, j) ∈ F × C at each time step t ∈ T ,
which might not follow the triangle inequality

And we are trying to output a solution composed of:

• For each time step t, a set of open facilities F t

• An assignment C × T → F of every customer to open facilities at each time step

while minimizing a cost function. This function varies greatly with the variety of settings in which
the problem has been studied but is essentially composed of three parts:

• The cost to open the facilities fi. This cost is paid at each time step t ∈ T where we want
the facility to be open. This is called the hourly model. If a facility has to be either open
or closed for the whole duration, a Ω(log T) approximation hardness result and O(log nT)
approximation algorithm can be found in [EMS14].

• The cost g to make a client switch from a facility to another. In the static case (|T | = 1) this
has no impact but in the dynamic one each client pays g each time it changes facilities.

• The cost to link the facilities to the clients. Two distinct settings are studied with differing
methods according to how the cost varies:

– The sum of distances setting where the cost is the sum of the distances between facilities
and their assigned clients. This has been extensively studied and current algorithms are
all within a constant factor of the optimal bounds [EMS14, ANS14].

– The sum of radii setting where the cost is the sum of the radii of all facilities, that is
the sum of their distances to their furthest client. This has not been studied in the
dynamic setting so far and is the main subject of this report. The method we get also an
application in the non-metric sum of distances setting.

Even though this problem comes mostly from clustering, it is quite easy to see implications outside
of this setting. One practical example would be a phone company trying to minimize its costs and
deciding where to install antenna towers and how much power to give them to cover all their clients.
The more powerful the antenna, the farther it reaches, and the more expensive it is, but installing
each antenna also has a fixed cost.

2 Formally, this corresponds to Uncapacited Facility Location, but as the notion of capacities – the maximal number
of clients attached to a facility – is completely outside the scope of this work we dispense with the “Uncapacited” in
the acronyms.

3

1.2 Completeness results

In their generality, all those problems are strongly NP-complete. Moreover, some of them don’t even
allow constant factor approximation algorithms. In the sum of distances setting, if no assumptions
are made on the distances, there is no (1− o(1)) log n approximation unless P = NP. If we restrict
ourselves to metric spaces – where the distances follow the triangle inequality – there are constant
factor approximations (the best current bound is between 1.46 and 1.49 [GK99, Li13]). However,
this is only true in the hourly setting. If we have to keep any facility opened for the whole duration
there is a Ω(1− o(1)) log T inapproximation hardness result [EMS14].

The sum of radii setting has been less extensively studied but some previous results hold, includ-
ing the (1−o(1)) log T inapproximation hardness when costs are not hourly – that is, when facilities
are either open or closed for the whole duration and the opening cost is paid once or not at all. We
provide a (1 − o(1)) log n approximation hardness theorem (Theorem 1 page 7) in the non-metric
case, based like other proofs on a reduction from SET-COVER.

1.3 Existing algorithms

There are many algorithms with guaranteed approximation bounds on facility location problems but
our research was mostly inspired by three algorithms in [EMS14], [CP04] and [ANS14], which we’ll
present here. The first one is an O(log(nT)) approximation algorithm to dynamic facility location
(DFL) with sum of distances in the non-metric case. It also introduces preprocessing techniques
which are used in [ANS14] and our algorithms. The second solves metric DFL with sum of distances
with cost at most 14 × OPT – that is 14 times the optimal cost – and the last solves static FL in
the metric radius setting with a cost at most 3×OPT .

1.3.1 Linear programming relaxation

All the algorithms used are based on designing a rounding scheme for a linear programming (LP)
relaxation. As the objective function and constraints of DFL are linear, we can reformulate an
instance as the following integer program (IP):
We have the following constants (given to us as input):

• Rti the set of all the radii from i to its different potential clients

• fi the cost of opening facility i

• g the cost of changing facilities for a client

And we introduce the 0-1 variables :

• ytir equal to 1 iff we open facility i with radius r at time t (yti in the sum of distances setting)

• xtij equal to 1 iff a client j chooses i at time t

• ztj equal to 1 iff j switched from an other facility to i between time t− 1 and t

The aim is to minimize

• For the sum of distances problem:∑
i∈F ,t∈T

fi · yti +
∑

j∈C,i∈F ,t∈T
xti,j · dt(i, j) + g

∑
j∈C,t∈T \{0}

ztj

• For the sum of radii problem:∑
i∈F ,t∈T ,r∈Rti

ytir · (fi + r) + g
∑

j∈C,t∈T \{0}

ztj

4

With three sets of constraints:

∀j, t
∑

i x
t
ij ≥ 1 : every client must be at each time step

∀i, j, t xtij ≤
∑

r≥dt(i,j) y
t
ir (xtij ≤ yti in the sum of distances problem) : no client can be assigned

to a closed facility

∀i, j, t ≥ 1 ztij ≥ xtij − x
t−1
ij : if j changes facilities then ztij must reflect that change and be equal

to 1

With the restriction that all variables take their values in {0, 1}, optimal solutions to this IP are
not a priori findable in polynomial time (unless P = NP), but there is a cost-preserving one-to-
one correspondance between solutions to the IP and to the original problem. By relaxing those
constraints and allowing the variables to take values in [0, 1], we can make it a linear program whose
optimum can be found in polynomial time by an interior point method [LS13]. The problem is that
this solution has variables which are fractional and simply rounding them up can increase the cost
exponentially. The following algorithms use the LP solution to build an IP solution with a constant
factor increase in expected cost.

1.3.2 EMS Algorithm

This algorithm by Eisenstat, Mathieu and Schabanel was initially made to solve sum of distances
DFL in the non-hourly model and has an O(log(nT)) approximation guarantee. It first preprocesses
the LP solution to obtain additional properties before solving t.

Algorithm EMS Preprocessing
for each client j ∈ C do
Partition time greedily into lj intervals [tjk, t

j
k+1) where lj and (tjk)k∈[lj+1] are defined as follows:

tjl+1 = T + 1, tj1 = 1 and tjk+1 is defined inductively as the greatest t ∈ (tjk, T + 1] such that

∑
i∈F

(
min

tja−1≤u≤t
xuij

)
≥ 1

2

end for

This preprocessing creates a partition of the time into a set of intervals with the following
properties:

• For each j, xti,j does not change inside each of j’s intervals

• The total number of intervals Z is such that Z ≤ 2 ·
∑

i∈F,t∈T,j∈C z
t
ij

As we will also use this preprocessing; an explanation and proof can be found in the Appendix.
Once we have a solution satisfying those properties, we simply have to use the EMS algorithm.

The authors then prove that with constant probability all clients are covered during all intervals,
and with constant probability all the cost is within O(log(nT)) times the optimal cost. Corollary 1
gives a variation of the algorithm which lowers that bound to O(log n).

3 This is a slightly modified version of their algorithm, although both presentations are equivalent.
4 That is a random variable X such that for x ∈ R+, Pr[X ≥ x] = 1 − e−oix . Those have very useful properties

as a random exponential variable of parameter λ0 is the smallest among a set of random variables of parameters λi
with probability λ0∑

λi

5

Algorithm EMS Algorithm3

Require: A preprocessed optimal fractional solution to the LP
for each facility i ∈ F do
draw an exponential random variable4 Yi of parameter 2 log(2nT).

end for
for each time step t ∈ T do

open all the facilities satisfying Yi ≤ yti
end for
for each time interval U = [tjk, t

j
k+1) do

assign client j to argument of mini∈F

(
Yi

minu∈U x
u
ij

)
end for

1.3.3 ANS Algorithm

This algorithm by An, Norouzi-Fard, and Svensson works in the metric sum of distances setting. It
uses the same assumptions5 on the structure of the LP solution as the EMS as well as an additional
one, which is explained in the preprocessing part of the Appendix:

• For every facility i there is an oi ∈ [0, 1] such that for all j and t, xti,j ∈ {0, oi}

Algorithm ANS Algorithm
Require: The fractional preprocessed solution to the LP
for each facility i ∈ F do
draw a random variable Yi following an exponential distribution of parameter oi
Compute the list L of facilities sorted by non-decreasing values of those variables.

end for
Compute L′, random uniform permutation of the clients
for each time step t ∈ T do
for each facility i ∈ F do
find the first client j in L′ that has xtij > 0 in the LP solution and draw an arrow to it

end for
for each client j ∈ C do
find the first facility in L with xtij > 0 and draw an arrow to it

end for
Starting from any client and following the arrows one always ends up in a cycle of length two
(with one facility and one client). Assign each client to the facility in the corresponding cycle

end for

Key ideas of the proof

This algorithm has at least a 1
4 chance of attaining an approximation ratio better than 14. The

proof is based on the fact that once the initial connections are made, the connection paths lengths
are exponentially distributed with constant expectation.
The authors prove that for any edge the number of connection paths going through it is proportional
to the cost paid for the edge in the LP solution. For essentially the same reasons, if a client changes
facilities between two time steps it only affects a constant number of other clients – at most 7 in
expecation. Finally, a facility i is open if and only if the client j it is pointing to points towards i.

5 Some of those assumptions might not be necessary for the algorithms to work but are used in the proofs.

6

This happens with probability xtij ≤ yti so the expected opening cost for each time step is
∑

i y
t
i

which is optimal.
We propose a natural adaptation of this algorithm for metric DFLR and we explain the intuition

on it in section 3.

1.3.4 The Pruning-Clustering Algorithm

The other algorithm we were inspired by is a primal-dual algorithm from [CP04] which introduced
the LP for FL with sum of radii cost in the static setting and achieved a 3-approximation.
We start with the dual6 of the LP:

Maximize
∑

j αj

With constraints

∀i, r
∑

j:d(i,j)≤r

αj ≤ r + fi

where the dual variable αj corresponds to the utility7 of client j.
The algorithm increases the variables αj arbitrarily until it can’t increase any of the variables
anymore (which is in this case equivalent to solving the dual LP). We call a facility-radius couple
tight if the corresponding constraint is tight.

Algorithm Pruning-Clustering Algorithm
Let T be the set of tight (i, r) and F := ∅
repeat
Let (i, r) be the facility of largest radius in T (break ties arbitrarily)
Let N be the set of all facility-radius couples (i′, r′) intersecting (i, r) , that is such that
d(i, i′) ≤ r + r′ (including itself)
Let F := F ∪ {(i, 3r)}
Let T := T \ N

until T = ∅
return F

Key ideas of the proof

The idea here is that any client j is covered by at least one facility in F or the corresponding
constraint wouldn’t be tight and αj could be increased. Moreover, each time we remove a facility-
radius couple from T , it’s because it intersects (i, r). As it also has radius smaller than r, it is
entirely included in (i, 3r). Each client is then covered and can be assigned to any of the facilities
covering it. A rigorous proof is found in the original paper.

Remark. Both of these algorithms only work in the metric case and fail completely when the triangle
inequality is not satisfied (the first one by giving solutions potentially having an exponential increase
in cost and the second by giving solutions where some clients aren’t covered).

6 Any linear program with a cost function to minimize can be transformed into a maximization problem such that
the values of the best solutions are identical due to the duality theorem. Each constraint is transformed into a variable
and vice-versa, by a polynomial algorithm. For more details see [Chv83] for example.

7 Our interpretation of the dual is that here each client tries to maximize its utility but for any facility there can’t
be more total utility used by clients in its radius than the price paid to open the facility with this radius.

7

2 Non-Metric Dynamic Facility Location with Sum of Radii Cost

The three algorithms shown previously solve the dynamic sum of distances and the static radius
cases. The natural question is what happens in the dynamic radius case, especially as this formulation
might be a better suited model for some practical applications. We prove that the non-metric case
does not admit (1−o(1))× lnn approximation polynomial time algorithms. Despite this we are able
to provide an algorithm that is within a factor 2 of the optimal reachable approximation ratio. Our
technique applies as to get an improvement of the current EMS for the DFL with sum of distances
in the non-metric case.

2.1 Inapproximability

To prove hardness of approximation for DFL we will reduce from SET-COVER, which is the classical
problem for logarithmic inapproximability results. We consider a family A of subsets of {1, 2, . . . n}
and we want to find the smallest collection of subsets B ⊆ A such that every integer in {1, 2, . . . n}
is in at least one element of B. It turns out that no known polynomial time algorithm can guarantee
outputting a solution with cost under log n times the cost of the optimal solution, formally:

Fact 1. [DS13] SET-COVER admits no (1− o(1))× lnn approximation unless P = NP.

This was proven using projection games and gives us:

Theorem 1. Non-metric sum of radii Dynamic Facility Location admits no (1 − o(1)) × lnn ap-
proximation unless P = NP.

Proof. We consider a SET-COVER instance and create an instance of DFLR with fi = 1, g = ∞
and T = 1. We take one facility per set in A and a set of n = |

⋃
A∈AA| clients. We set the

distances d(i, j) to 0 if j is in the set corresponding to i and to ∞ if not. Any solution with cost
less than ∞ is a collection of sets covering all the elements and is a solution of SET-COVER, and
reciprocally. Moreover both their costs are equal. An algorithm that would guarantee a (1− o(1))×
lnn approximation on DFL would then guarantee the same on SET-COVER which would imply
P = NP from Fact 1.

Remark. In the theorem we set g to∞ for ease of reading but it is enough to set it to |A|. Moreover,
this result uses a single time step hence also holds for Static Facility Location with Sum of Radii.

2.2 Asymptotically optimal approximation algorithm

Our goal here is to get an algorithm whose approximation ratio is as close to the (1 − o(1)) log n
bound as possible. We first get an algorithm with approximation ratio O(log(nT)) which we use as
a subroutine in a second algorithm achieving an O(log n) approximation. This algorithm is our first
major contribution in this report.

2.2.1 log(nT) approximation Algorithm

We start with a solution to the LP shown earlier, modify it slightly and then get a randomized
algorithm which outputs a low cost solution with constant probability.

We will start with the preprocessing introduced in [EMS14]. For each client we want to have a
partition of the time into a set of intervals with the following properties:

• For each j, xti,j does not change inside each of j’s intervals

• The total number of intervals Z is such that Z ≤ 2 ·
∑

i∈F,t∈T,j∈C z
t
ij

8

Algorithm 1
Require: The preprocessed solution to the linear program
repeat
for each facility i ∈ F do
Draw ai uniformly in [0, 1]
Open the facility i at each time t with maximum radius r such that ai ≤

∑
p≥r y

t
ip

end for
for each client c ∈ C and each of its intervals do
if it is covered by at least one facility over the whole interval then
Assign it to any covering facility

end if
end for

until all clients are covered during all intervals (without closing facilities between repetitions)

The preprocessing is explained in the Appendix, and increases the cost of the linear program solution
by at most 2. It allows us to show that if a client is covered by a single facility during each of its
intervals, the changing cost is at most Z hence at most twice the optimal changing cost.

Theorem 2. Algorithm 1 gives an O(log(nT)) approximation with constant probability.

Proof. Consider the probability that a client j is covered during a given interval. If a facility i has
an ai lower than

∑
r≥dt(i,j) y

t
ir, client j will be covered by i. From the LP we know that∑

r≥dt(i,j)

ytir ≥ xtij

so the probability of ai being lower than
∑

r≥dt(i,j) y
t
ir is at least xtij .

If the client j is not covered then all of the facilities have ai ≥ xtij which happens with probability
at most

∏
i∈F (1− xtij)

The probability that a client is left uncovered in a time step is then at most 1−
∏
i∈F (1−xtij). By a

simple recursion based on the fact that the maximum of x× (b− x) is reached when x = b− x, this
function has its global minimum when all the xtij are equal. This happens when they are all equal
to 1

n , hence the probability is greater than 1− (1− 1
n)n ≥ 1

2 .
If we repeat this dlog2(Z)e + 1 times, we get that each interval is not covered with probability

at most
1

2dlog2 Ze+1
≤ 1

2Z

By using the union bound, the probability that at least one client is not covered during one of its
intervals is at most 1

2 . Hence with probability at least 1
2 the algorithm repeats at most dlog2(Z)e+1

times. As in Algorithm 2 from [EMS14], at each repetition, the expected cost for each facility is
equal to its cost in the LP solution. As we open each facility at each time step with the maximum
radius over all repetitions, the expected cost is at most the sum of costs over all repetitions, and the
same is true for the sum over all facilities. By Markov’s inequality with probability at least 2

3 the
cost of the sum is not more than 3 times the sum of expectations, hence 3× (dlog2(Z)e+ 1)×OPT .

By using the union bound again, with probability at least 2
3 −

1
2 = 1

6 all the clients are covered
in less than log2(Z) + 1 repetitions and the cost is at most 3 times its expectation.

As Z ≤ n× T , we output with probability at least 1
6 a solution with cost at most

6 dlog2(Z)e ×OPT ≤ 6 (1 + dlog2(nT)e)×OPT

9

Remark. By a careful analysis (see Appendix), we can get approximation ratios arbitrarily close to
β × ln(Z)×OPT , with

β = 2 log2

(
e

e− 1

)
× log2(e) < 1.93

2.2.2 log n Approximation Algorithm

We can now use Algorithm 1 as a black box to get a better bound in the cases where logZ is much
larger than log n.

Algorithm 2

if Z ≤ n3 then
Run Algorithm 1

else
repeat
Greedily find the biggest t1 such that the number of clients changing facilities between t0 and
t1 is less than 2n

until you have a partition of T into at most Z
n chunks such that each chunk except potentially

the last has between n and 2n clients changing facilities.
Solve each chunk independently using Algorithm 1
return the assignment which corresponds on each chunk to what was given by Algorithm 1

end if

Theorem 3. Algorithm 2 is an O(log n) approximation with constant probability for non-metric
DFLR.

Proof. First off, if Z ≤ n3 then log(Z) ≤ 3 log n and we have a 25 log2(n) approximation ratio
with constant probability. Second, it is always possible to cut the solution in chunks with at most
2n clients changing facilities (or equivalently, intervals) because at each time step at most n new
intervals start8. Each chunk is solved on a partial instance where Z ′ is at most 2n, hence Algorithm
1 returns an approximation with ratio at most 6(log n + 3). The total cost is then the cost of
those approximations plus the cost of joining the solutions. As each joining costs at most n × g
(the cost of n clients changing facilities), the total joining cost is at most Z

n × n× g hence at most
Z × g ≤ 2×OPT . We finally get an approximation ratio of 6 · log n+ 20.

Remark. As with Algorithm 1, the ratio could be improved by only running Algorithm 1 when
Z ≤ n1+γ for small γ and also get a bound of β× ln(n)×OPT . Moreover, by comparing the output
of the LP to the cost of the solution and relaunching when the cost is too high we can get a Las
Vegas algorithm with the same expected polynomial time, as the biggest time factor is due to the
linear solver (using general interior point solvers). Using the solver from [LS13] we can then get an
expected computation time of O(nm(n+m)1/2).

2.3 Application to the non-metric sum of distances problem

In the non-metric dynamic sum of distances problem, Algorithm 3 from [EMS14] reached anO(log nT)
approximation, with a Ω(log n) hardness result from [Hoc82].

8 To show by example, suppose we have n = 4 clients and Z = 100. We can maintain a counter and at each time
step we increase the counter by the number of clients who switch. As soon as the counter becomes greater than n
we finish the chunk and begin a new one, resetting the counter for the next time step. As the counter was under n
before the last time step was added to the chunk, it contains strictly less than 2n clients changing and this is true for
all chunks.

10

The authors proved that this algorithm gives in the worst case an 8 log n approximation9 with proba-
bility 1

4 . Using this algorithm as a black box instead of Algorithm 1 inside Algorithm 2 and following
exactly the same proof as previously, one gets Algorithm 2B and the corollary:

Corollary 1. Algorithm 2B gives a 16 log n approximation with constant probability for non-metric
DFL with sum of distances cost.

Remark. One should notice that this method is of no use in the non-hourly model and cannot be
applied to Algorithm 1 from the same paper (which also has an O(log nT) approximation ratio).

3 Metric Dynamic Facility Location with Sum of Radii Cost

We shall now consider the metric case, where distances between each pair of elements are defined
and follow the triangle inequality. Because of this the reduction from SET-COVER cannot be
implemented directly as we require distances to be either 1 or greater than n; hence we do not have
the log n inapproximation hardness result. We can however show that a natural adaptation of the
ANS algorithm does not yield the constant approximation ratio which might be reachable. We shall
present the algorithm and the counterexample along with some preliminary results about it before
getting to the proof that the algorithm’s approximation ratio is at least Ω(log logN).

3.1 Modified ANS Algorithm

We propose a natural adaptation of the ANS algorithm to adapt it to the sum of radii setting. We
use the same preprocessing (see Appendix) to make sure that:

• Each client has constant xti,j on each of its intervals, and the number of intervals is at most
twice the changing cost of the optimal LP solution.

• Each facility is duplicated so that we have one virtual facility per radius, which is then decom-
posed into multiple virtual facilities10 to ensure that for all i, j, t xti,j ∈ {0, oi}.

3.2 Lower bound for the modified ANS algorithm

Remark. From here until the end of the section we shall adopt a new notation with N = 2n clients
as it is more comfortable to work with.

We did not manage to prove an upper bound for a natural adaptation of the algorithm pre-
sented in the previous section, but we did prove that it cannot yield an approximation better than
Ω(log log n) in the worst case. This is shown by introducing a structure Tn and proving that it can
“confuse” the LP solver so that every facility is taken with probability 1

n . Then we can show that
for any open facility i, with high probability a client far from i will connect to it. As this is true in
expectation it means that the expected total cost will be much higher than the optimal. Finally, by
modifying Tn slightly we can also get the algorithm to fail with high probability.

Before getting to the counterexample we need a general lemma which we’ll prove at the end of
the section:

Lemma 1. Given a perfect binary tree T on N−1 = 2n−1 nodes rooted in r and a random uniform
permutation p on its internal nodes, the probability of there being a leaf l such that p(r) > p(i) for
each ancestor i of l is at least 1

14 .
9 This factor 8 could be improved in a fashion similar to the constant in Theorem 3, as was mentionned by the

original authors.
10 This means that we create a polynomial number of facilities which are duplicates of the original ones, existing in

the exact same place. Once we output the final assignment we regroup all of them. This makes for easier manipulation
as the virtual facilities behave statically: either a client is attached to them with a constant fraction common to all
clients or not at all.

11

Algorithm Modified ANS Algorithm
Require: a solution to the LP
Preprocess the solution to get the required properties
for each facility i ∈ F do
draw a random variable Yi following an exponential distribution of parameter oi

end for
Let Π be the permutation of the facilities sorted by non decreasing Yi
Let σ be a uniform random permutation of the clients
for each time step t ∈ T do

Link each client j to the facility i of lowest rank in Π for which it has xti,j 6= 0 (which we’ll call
its target)
Link each facility i to its client j of lowest rank in σ that has xti,j 6= 0 (the facility’s target)
This gives a set of cycles with trees attached to them : open each facility in a cycle and connect
all clients in the connected component to it

end for
return this assignment

Remark. We can already have a simple lower bound on that probability, by considering a fixed
branch and seeing that as it corresponds to a uniform permutation of the branch, the probability
that p(r) < p(i) for all i in the branch is exactly 1

n .

3.2.1 Counterexample preliminaries

Definition 1. We consider an arborescent structure Tn in n dimensions (Figure 1). It is composed
of n different levels of hierarchy, with level 0 being a unique facility at the origin of the space and
level k ≥ 1 composed of all possible facilities at coordinates (a0, a1, . . . , ak−1, 0, 0, . . . , 0), where
al = ±2−l. The clients are at each possible tuple (a0, a1, . . . , an−1). We then have N = 2n clients
and 2n − 1 facilities. We say that a client C (or a facility) is under a facility F if the non-zero
coordinates of F are a prefix of those of C. We consider a metric space with the infinity norm L∞.
The distance from F to clients under it is exactly 2−k where k is F ’s level in the hierarchy.

Lemma 2. The fractional solution Sn to the linear program launched on Tn where all facilities are
taken with mass 1

n and contribute 1
n to all clients under them has optimal cost.

Proof. First, the optimal cost is 1. This can be proved by induction as follows: it is trivially true
when n = 1. Suppose that it is true for a certain n, and look at Tn+1. That structure is composed of
two instances A and A′ of Tn where the distances have been divided by 2, and an additional facility
i0 between them. We have to cover the sets of clients both in A and A′. Suppose that any facility in
A can cover a client in A′. This means that the facility has radius at least 2, and any mass on it can
be moved instead to i0 which can cover the same clients while having radius 1. Hence in no optimal
solution can a facility in A (respectively A′) cover a client in A′ (respectively A). Each client is then
covered by a mix of its optimal solution in A (or A′) and i0. Any mass yi0 on i0 reduces the mass
needed on both A and A′ by yi0 , and the optimal cost is the minimum of yi0 + 2(1 − yi0)OPT(A)
where OPT(A) is the cost of an optimal solution on A (which we pay for both A and A′), hence it
is exactly 1.

As we have 2k facilities at level k, if we open them with radius 2−k, we cover all client with a
total radius cost equal to 1. A solution consisting of a single level where all facilities are taken with
mass 1 is called pure, and as those are all optimal, any linear combination of them such that the
total of the masses assigned to each level is 1 is also optimal. Sn is then a solution of cost 1 and is
optimal. It happens that in practice no linear solvers would give such a solution but we can modify
very slightly the original instance to force this mixed solution to be the optimum, for details see the
Appendix.

12

Figure 1: From top to bottom T1, T2 and T3 with the facilities in red and the clients in blue. Lines
represent the arborescent structure and in T3 the dotted lines represent distances in the third
dimension.

Lemma 3. The cost of the modified ANS algorithm when launched on Sn is at most logN .

Proof. Suppose that facility i is open with radius 2−h, with h smaller than i’s level. For that to
happen a client must be attached to i and be at distance 2−h. As this client cannot be under i or
under any of its ancestors with level at least h+ 1, it must be going first through a facility of level
at most h before being redirected to i. Such a facility can either open itself or redirect a batch of
clients to exactly one other facility under it, open with a radius at most 2−h. This means that for
any k there are at most 2k facilities opened with radius 2−k, and by summing all this we get a cost
of at most 1 per level hence at most n.

3.2.2 Proof of the lower bound

We now have the tools to prove the following lemma, which is the last step before prooving Theorem
4:

Lemma 4. When launched on Sn, the modified ANS algorithm’s cost expectation is Ω(log logN).

Remark. This instance uses a single time step, and worse approximation might be obtained by using
a dynamic counter-example.

Proof. First let’s consider the cost to open facilities before increasing the radius by assigning clients
which go through other facilities. The probability of a facility i opening is the probability of the
client of lowest rank attached to i targeting i. This client has n ancestors all taken with mass 1

n in
Sn, so will target i with probability 1

n . Any facility is then chosen with probability equal to 1
n , with

an initial radius – before any clients are redirected to it – equal to 2−k. As each of the 2k facilities
on level k is taken with probability 1

n with initial radius 2−k, the sum over all levels and facilities is
then 1. The increase between this cost and the final cost is due to clients far away from the facility
choosing to be attached to it.

13

We now consider a facility that is chosen in the solution and we estimate its expected cost. A
client C is attached to an open facility F if and only if:

• C is under F and F has the smallest rank among C’s ancestors, OR

• there is a facility F0, ancestor of both C and F such that F0’s target is a descendant of F ,
AND C’s smallest ancestor is F0 (Figure 2).

In the first case attaching the client doesn’t change the radius of F . In the second, F has to open
with radius at least 2−k where k is the level of the closest common ancestor of F and C (we call
that being opened at level k).

Figure 2: C is attached to F if and only if C0, target of F0, itself target of C is under F and
targetting it.

If we consider an open facility F at level k then its expected cost will be∑
l≤k

Pr[opening at level l]× 2l

which means that the ratio between the expected cost and the optimal cost –2k for a facility at level
k – will be ∑

l≤k
Pr[opening at level l]× 2l−k

Consider an ancestor of F , F0, at level k, which has a smaller rank than its ancestors. For F to
open at level k it means that a client C under F0 goes through F0 and is redirected to F . Moreover,
C and F ’s closest common ancestor has to be F0 or F would be open at a level higher than k . The
probability of F opening at level k is then at least equal to the probability of a client under F0 with
no closer common ancestor with F going through F0 to reach F . Which is to say the probability
of F0’s target being under F , times the probability that a client that isn’t under the subtree of F0

containing F having F0 for target. Those two events are not independent but are correlated so the
probability of both happening is at least the product of probabilities.

14

The first one’s probability is |clients under F |
|clients under F0| , hence 2k−l. The second is bounded with Lemma 1, as

being the target of a client is exactly the same as having a leaf x satisfying P (x), and we get a lower
bound of 1

14 .
Moreover, the subtree not containing F has a probability at least 1

2 of having its root bigger
than F0 and hence we have a probability at least 1

28 of having a client targetting F0.
The expected cost is then at least∑

l<k

2k−l × 1

28
× 2l−k × Pr[F0 smaller than ancestors]

Figure 3: Each of the ancestors F0, F1,F2 of F has a constant probability of having a client pointing
to it (or higher) through the half of the tree not containing F . They also have a 1

l probability
of being smaller than their ancestors. Hence the O

(∑
l<k

1
k

)
expectation for the increase in

cost for F .

The probability of an ancestor of F at level l being smaller than its ancestor is equal to 1
l , so

the expected cost becomes at least ∑
l<k

1

28
× 1

l
≥ ln(l)

28

For all facilities at levels greater than n
2 this at least ln(n)−1

28 (Figure 3).
The expected cost of the output of the algorithm being the sum of the costs for opening the

facilities, by linearity of expectation it is then also greater than∑
F opened with level ≥n

2

E[cost of F]

which is finally greater than lnn
57 for n large enough. This proves that the expected cost of the

algorithm is in θ(log n) with N = 2n clients, hence at best a log logN approximation.

Remark. We can improve the constants up to 1
6 log logN using improved bounds for Lemma 1.

Our second major contribution is that with high probability, the modified ANS algorithm does
not yield a better approximation than θ(log logN). Before proving this result we need one last tool,
Hoeffding’s inequality:

15

Theorem 4. (Hoeffding [Hoe63]) Let X1, X2, . . . Xk be i.i.d. random variables which are almost
surely bounded in [ai, bi] and let X be their mean. Then

Pr
(∣∣X − E[X]

∣∣ ≥ t) ≤ 2 exp

(
− 2k2t2∑k

i=1(bi − ai)2

)

Theorem 5. There is a constant c such that probability of the modified ANS algorithm giving a
approximation smaller than log logN

c is at most 1
logN .

Proof. Consider an instance composed of k copies of the structure Tn, each far from the others. This
means that the linear program will solve it just like multiple simple instances of Tn, and so will the
algorithm, so the expected cost will be the sum of expected costs for S. However as all the different
instances are evidently independent the distribution of the cost can be approximated, even if we
only have very limited knowledge about it. We consider k disjoint instances, and we let the Xi be
the cost of each. Then, using Lemma 3, the probability that the approximation will be better than
half the expectation is at most 2 exp

(
−2k

log2N

)
.

By setting k = log3N we get that the probability of getting a good approximation becomes less
than 1

N . We now have a probability 1−O(1
N) of getting an average cost larger than log logN

c but we
increased the cost of the optimal solution by a factor log3(N). This is however irrelevant as this means
that with high probability the total approximation ratio is not better than log log(N×log3N)

c ≥ log logN
c+1

for N big enough.

Corollary 2. Repeating the modified ANS algorithm a polynomial amount of times and taking the
best solution is not enough to guarantee a solution better than log logN

c′ for a constant c′.

Proof. By setting k = N2 the total approximation ratio does not change by more than a o(1) factor
but the probability of getting a better approximation becomes exponentially small.

3.2.3 Proof of Lemma 1

Recall the statement of Lemma 1: given a perfect binary tree T on N − 1 = 2n − 1 nodes rooted in
r and a random uniform permutation p on its internal nodes, the probability of there being a leaf l
such that p(r) > p(i) for each ancestor i of l is at least 1

14 .

Remark. In the following we can consider n to be even to have no rounding problems but as the
probability decreases monotonously with n it is also true for odd n – this is due to the fact that the
perfect binary tree of height 2k− 1 is included in the tree of height 2k so any path from root to leaf
in the first is also a path in the second, and the proportion of permutations in which you have one
is strictly greater in the tree of height 2k − 1. This also means that it is true for full binary trees
which are not perfect11.

Proof. The proof works in the following way: we are looking for a path from root to leaf where the
root has the biggest rank, and we show that if the root’s rank is supposed high, then with constant
probability we can find a path from the root to a node at height n/2, and then another one from
this node to the leaf. For that we rely on the fact that if we only look at the subtree from the
root to height n/2, the number of nodes in such a subtree is an arbitrarily small proportion of the
total nodes. If the root is among the top quarter of the ranks, then if we look at the children of
any node in the subtree there is approximately a 3

4 chance of its rank being smaller than the root’s.
This probability will stay close to 3

4 even if we already found lots of such nodes because we are only
looking at an ε proportion of the nodes.

11 Every node in a full binary tree has either zero or two children but the leaves may be at different levels as opposed
to the perfect binary tree of height n where all leaves are at height n.

16

This allows us to show that with constant probability there is a node at height n
2 whose ancestors

all have values smaller than the root’s. Moreover, with constant probability, on the subtree rooted
in this node at least one leaf also has that property, meaning that one leaf of T has the property we
wanted with constant probability. The trick is that as we only look at a very small fraction of T we
are able to bound the effects of the dependence between the values drawn for the nodes.

Figure 4: In the final tree we only look at the top half and one of the subtrees (in red), hence at
most 2n/2+1 nodes out of 2n − 1

More formally, let x = p(r) . We define as P (i) the property that all ancestors of i and i itself
have a rank in the permutation smaller than x. We consider the probability that at least one internal
node at height n/2 satisfies P . We only consider nodes at depth at most n/2 hence at most 2n/2

nodes. The probability each time we take a node that it ends up less than x is then at least x
2n − ε

where ε is the proportion of nodes whose values we are considering, and the probability of being
over x is at most 1− x

2n − ε. Let p(x, n, h, ε) represent the probability that in a perfect binary tree
of height n, at least one leaf in a perfect binary subtree of height h satisfies P, relative to its root x,
when we are only considering at most an ε proportion of the nodes.

Then, for h ≤ n/2,

p(x, n, h+ 1, ε) ≥ 2× p(x, n, h, ε)× Pr[A] +
(

1− (1− p(x, n, h, ε))2
)
× Pr[B]

where A is the event in which a single child of the root has a lower rank than x, and B the event in
which both children of the root have a lower rank than x.

Indeed, consider a node and its two children and subtrees. Then the node satisfies P if either
exactly one of the two children is over x and its subtree satisfies P, or both children are over x and
at least one of its subtrees satisfy P . Those two events being disjoint we can sum their probabilities.

By setting ε as 2−n/2, we know that Pr[B] ≥
(
x
2n − ε

)2 because the probability of any child
being under x is equal to the proportion of ranks left under x. However as we have considered at
most an ε proportion of the nodes, this proportion is at least x

2n − ε. Similarly, we can see that
Pr[A] ≥

(
x
2n − ε

) (
1− x

2n − ε
)
.

17

We then get that

p(x, n, h+1, ε) ≥ 2×p(x, n, h, ε)×
(x

2n
− ε
)(

1− x

2n
− ε
)

+
(x

2n
− ε
)2 (

2× p(x, n, h, ε)− p(x, n, h, ε)2
)

which is
p(x, n, h+ 1, ε) ≥ p(x, n, h, ε)×

(
2x

2n
− 5ε

)
−
(x

2n
− ε
)2
p(x, n, h, ε)2

With probability at least β − α− 4ε, x verifies

1

2
≤ α ≤ x

2n
− 5

2
ε ≤ x

2n
+ ε ≤ β ≤ 1

and we get that p(x, n, h+ 1, ε) ≥ 2α · p(x, n, h, ε)− β2 · p(x, n, h, ε)2.
This is a quadratic recurrence relation. If we set un+1 = f(un) with f(y) = 2αy − β2y2 we can

see that f(y) > y if and only if y < 2α−1
β2 . Moreover, if u0 > 2α−1

β2 then for all n, un > 2α−1
β2 and we

get

p(x, n, h, ε) >
2α− 1

β2

This means that the probability, when taking the subtree of depth n/2, of finding a node at
depth n

2 satisfying P is at least 2α−1
β2 (β − α− 4ε).

Now let’s consider a tree T and a node at depth n/2 satisfying P which we have with probability
2α−1
β2 . We can look at the subtree beneath this node and with a probability 2α−1

β2 there will also be
a branch consisting entirely of nodes with values less than x. The only precaution to take care of is
that the total number of nodes we have looked at has doubled hence ε′ = 2ε (Figure 4). This gives

a final probability of
(
2α−1
β2

)2
(β − α− 8ε) . If we set x to be within [56 , 1], we get a final probability

of 2
27 − O(ε). As we have only considered a number of nodes at most equal to 2× 2n/2, ε→ 0 and

the probability of there being a leaf of the tree satisfying P is at least 1
14 .

Remark. By bounding the value at each step more precisely we can increase this probability to 1
3

and then 0.35 at the cost of lengthier computations. It is also possible to manually get an upper
bound of 39

70 ≤ 0.53 by looking at a tree of height 3. Detailed computations can be found in the
Appendix.

18

4 Conclusion

To sum up our contributions as well as the current state of the art, here are the approximation ratios
and hardness bounds in the various cases, where * represents our results:

Metric (algorithm/hardness) Non-Metric (algorithm/hardness)
sum of distances sum of radii sum of distances sum of radii

Static 1.52 [MYZ06]/ 1.46[GK99] 3/NP-Hard [CP04] O(log n)[EMS14]/Ω(log n) 2 log n/(1− ε) log n *
Dynamic 14 [ANS14]/ 1.46[GK99] ?/NP-Hard [CP04] O(log n)*/Ω(log n)[Hoc82] 2 log n/(1− ε) log n *

We also showed that a natural adaptation of the ANS algorithm from [ANS14] gives at best an
Ω(log logn) approximation. The last result was a small but simple combinatorics result which could
prove useful in other settings and doesn’t appear in the literature to the extent of our knowledge.

The next step would be to prove a bound on approximation ratio of the modified ANS algorithm,
and we believe a polyloglog bound might be reachable. Trying other methods to find a constant
factor approximation algorithm is also in our goals, and we have a few ideas to test towards this
(by forcing the clients to “cooperate” in a certain way, using additional preprocessing). Adapting
methods from the Pruning-Clustering Algorithm could also yield this result but so far our efforts
with it have been fruitless.

Acknowledgements

I would like to thank my advisor Nicolas Schabanel for his guidance and overall help, E. Hamel for
our productive discussions, and C. Malaingre for help with the simulations. I would also like to
thank S. Kachanovich and D. Betea for proofreading this report and A. Dahan for help with the
LaTeX.

19

References

[ANS14] Hyung-Chan An, Ashkan Norouzi-Fard, and Ola Svensson. Dynamic facility location via
exponential clocks. CoRR, abs/1411.4476, 2014.

[BS12] Babak Behsaz and Mohammad R. Salavatipour. On minimum sum of radii and diame-
ters clustering. In FedorV. Fomin and Petteri Kaski, editors, Algorithm Theory - SWAT
2012, volume 7357 of Lecture Notes in Computer Science, pages 71–82. Springer Berlin
Heidelberg, 2012.

[Chv83] V. Chvátal. Linear Programming. Series of books in the mathematical sciences. W.H.
Freeman, 1983.

[CP04] Moses Charikar and Rina Panigrahy. Clustering to minimize the sum of cluster diameters.
J. Comput. Syst. Sci., 68(2):417–441, 2004.

[DS13] Irit Dinur and David Steurer. Analytical approach to parallel repetition. CoRR,
abs/1305.1979, 2013.

[EMS14] David Eisenstat, Claire Mathieu, and Nicolas Schabanel. Facility location in evolving
metrics. CoRR, abs/1403.6758, 2014.

[GK99] Sudipto Guha and Samir Khuller. Greedy strikes back: Improved facility location algo-
rithms. Journal of Algorithms, pages 228–248, 1999.

[Hoc82] DoritS. Hochbaum. Heuristics for the fixed cost median problem. Mathematical Program-
ming, 22(1):148–162, 1982.

[Hoe63] Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal
of the American Statistical Association, 58(301):13–30, March 1963.

[KH76] Alfred A. Kuehn and Michael J. Hamburger. A heuristic program for locating warehouses.
In Mathematical Models in Marketing, volume 132 of Lecture Notes in Economics and
Mathematical Systems, pages 406–407. Springer Berlin Heidelberg, 1976.

[Li13] Shi Li. A 1.488 approximation algorithm for the uncapacitated facility location prob-
lem. Information and Computation, 222:45 – 58, 2013. 38th International Colloquium on
Automata, Languages and Programming (ICALP 2011).

[LS13] Yin Tat Lee and Aaron Sidford. Matching the universal barrier without paying the costs
: Solving linear programs with õ(sqrt(rank)) linear system solves. CoRR, abs/1312.6677,
2013.

[MYZ06] Mohammad Mahdian, Yinyu Ye, and Jiawei Zhang. Approximation algorithms for metric
facility location problems. SIAM Journal on Computing, 36(2):411–432, 2006.

[Vyg05] Jens Vygen. Approximation algorithms for facility location problems. Lecture Notes, 2005.

20

5 Appendix

5.1 Preprocessing

5.1.1 Determining when client change facilities

This is a classic preprocessing that was introduced in [EMS14] and used again in [ANS14]. We start
with a solution (x, y, z) to the LP and want to output another one (x, y, z) such that the total cost
is at most twice as much and such that for each client j we can compute a division of T in a set of
intervals satifsying the following:

• For the duration of each interval all the xti,j are constant

• The number of intervals is at most 2×
∑
ztij

To this end we set tjk = 1 and a = 1 and we are looking iteratively for the biggest t ∈ (tjk−1, T + 1]
such that t ∑

i∈F

(
min

tjk−1≤u≤t
xuij

)
≥ 1

2

If tjk = T + 1 we stop here, if not we increment a and create a new interval the same way.
Now for each interval we can set each xtij to 2×min

tjk−1≤u≤tk
xuij , which guarantees that

∑
i∈F x

u
ij ≥ 1.

By setting each yti = 2× yti we also make sure that xtij ≤ yti.
Moreover, it is easy to see that if between tjk and tjk+1 we have

∑
i∈F

(
min

tjk−1≤u≤t
xuij

)
≤ 1

2 , it

means that
∑

t∈(tjk,t
j
k+1]

ztij ≥ 1
2 . This in turn means that for each interval the initial solution paid

at least 1
2g, and here we pay at most g (to completely change all the xtij between one interval and

the next).
Hence both the changing cost and the facility opening cost are at most multiplied by 2 to achieve

the property, and this algorithm works in linear time in its input.

5.1.2 Forcing clients to have the same mass on facilities

This preprocessing is similar to the one used in [ANS14] and creates virtual copies of each facility
to have the following property: for each i and each r there is an oir ∈ [0, 1] such that for all j, t,
xtij ∈ {0, oir} with d(i, j) ≤ r.

First we create an additional facility with a different radius for each possible i, r and t. We
greedily assign the j to the new facility of smallest radius possible with mass xirj such that xirj ≤ yir,
and then to the next radius until

∑
r xirj = xij .

Then for each of the new facilities i, r (which now have a fixed radius) we create at most one
new virtual facility per client attached to i, such that the first has mass β0 = minj:xirj>0 x

t
irj , the

second mass β1 = minj:xirj−α0>0 x
t
irj − β0 and so on, and by assigning clients greedily to them so

that each client is assigned with mass either βj or 0.
If this is done after the first preprocessing we have the properties required, with a number of

facilities at most multiplied by Tn2.

5.2 Forcing the LP to find a mixed solution

If we give the structure Tn to the LP solver, even though it could give any mix of pure solutions
(that is, consisting of a single level), it probably wouldn’t as most solvers output a vertex of the
polytope of solutions, and all mixed solutions are on the interior of the optimal facet of the polytope.
We must then modify it slightly to add an incentive to be in the center of the facet, hence to have
each facility in Tn be taken with probability 1

n .

21

We now take an instance where fi = 0 for all i, g = 0 and the time steps are separated in two
groups. In the first one we have a modified structure Tn, and in the second we have a multitude of
steps meant to force each client to attach to each of its facilities with mass 1

n .
To do this consider the construction where you have an (n+ 1)− simplex of side r, with clients

at the vertices and facilities at the center of each facet (as there are n + 1 facets we needed the
additional facility). The optimal assignment here is easy to compute because if we take each facility
with mass 1

n and radius 1
2 all the clients are covered by n facilities, hence are completely covered

and the total cost is r
2 ×

n+1
n . It is easy to see that this is optimal because if any facility were open

with radius r and mass α the contribution to all clients would be α and by simply paying α
n on each

facility we would have the same coverage with cost rα(n+1)
2n instead of rα.

The instance then goes as follows: we have one last time step with the structure Tn where instead
of each client there is a set of n+ 1 new clients and where we have the new set of facilities (one per
group of clients) very far from Tn.

Before that we have 2n time steps in which all the clients and facilities are in the same place at
the center of the space, except for one client set and the n + 1 corresponding facilities (the n the
initial client was connected to, plus the one we added for the set).

At each of those time steps, the clients are the vertices of a simplex of side r at the center of the
space and the facilities are at the center of each facet.

The facilities we added per group of client have mass 1
n until the last step where they all decrease

to 0 and then have no influence on the last time step.
By making r small enough (2−2n) we can make sure that the cost increase is a fraction of the

initial cost, which also means that any client can only put mass on its corresponding initial n
facilities. By construction the optimal for each client is to put mass 1

n on each of its initial facilities,
and as this is still an optimal solution for Tn this is the only optimal solution for the whole LP
instance. We then have an instance where the solvers output an assignment where each facility has
mass 1

n as we wanted, and where we multiplied by n the number of clients, by 2 + ε the number of
facilities and where we have 2n + 1 time steps instead of 1.

5.3 Better bound for Theorem 2

We recall that for each interval the probability that a client is covered during the interval is greater
than 1− (1− 1

n)n, which is decreasing towards 1− e−1.
By repeating the algorithm k times we then have a probability at most

(
1− e−1

)k of each interval
not being covered. If we set k = log2(Z)× log2(1− e−1), the probability of each interval not being
covered becomes 1

2Z . Using the union bound, the probability of all clients being covered in k rounds
is at least 1

2 . Then for any ε > 0, by using Markov’s inequality, the probability of the total cost
being more than (2 + ε)k ×OPT becomes 1

2+ε .
This means that with probability ε

4+2ε we get a solution with cost at most

(2 + ε) log2(1− e−1)× log2(Z)×OPT

or alternatively β × ln(Z)×OPT with, for small enough ε

β = (2 + ε) log2

(
e

e− 1

)
× log2(e) < 1.93

22

5.4 Better bounds for Lemma 1

5.4.1 By using integration

We know that the probability of finding a path of length n/2 is at least p(x, n, h, ε) ≥ 2α−1
β2 , and the

probability of finding the second half is then at least
(
2α−1
β2

)2
when we have

1

2
≤ α ≤ x

2n
− 5

2
ε ≤ x

2n
+ ε ≤ β ≤ 1

As the probability of x being in the bounds is (β−α−4ε), the proof just looked at good bounds for

α and β to maximize
(
2α−1
β2

)2
(β − α− 4ε). However we can instead “integrate”

(
2x−1
x2

)2 between 1
2

and 1. To do this we consider a finite sequence (αi), with α0 = 1
2 and αi+1 −αi = γ = 2−n/3. Then

the probability of x being between α and β is at least γ − 4ε, and the probability of there being a
path from root to leaf is at least

∑
0≤i<

⌊
1
γ

⌋
(

2αi − 1

α2
i+1

)2

× (γ − 4ε)

which is equal to

∑
0≤i<

⌊
1
γ

⌋
(

2αi+1 − 1− 2γ

α2
i+1

)2

× (γ − o(γ))

and at least ∑
0≤i<

⌊
1
γ

⌋
(

2αi+1 − 1

α2
i+1

)2

× γ

−O(γ)

As this is a Riemann sum and admits a limit, when n (and 1
γ) increases it tends towards

ˆ 1

1/2

(
2x− 1

x2

)2

dx =
1

3

As we said earlier the probability of there being a path between root and leaf decreases with n,
so if the probability of there being such a path were at some point strictly less than 1

3 it would then
stay under that value which is impossible as it tends towards 1

3 . The probability is then at least 1
3 .

5.4.2 By examining the distribution at height n/2

If we look at what happens at height n/2 it turns out that we more often have two paths from root
to height n/2 than one – in practice either we should have many or none, depending on the value of
the root. More precisely, if X is the number of paths at height n

2 − 1, the number of paths at height
n/2 is

∑X
i=1 Yi where the Yi behave like i.i.d. random variables corresponding to the probability of

finding either 0, 1 or 2 leaves smaller than the root. They are not truly independent but we can
control all the dependences with an ε correcting factor. If we temporarily ignore this factor we can
notice that by only considering the first i such that Yi is not equal to zero we have a probability
∼ x

2−x to have Yi = 2 and a probability ∼ 1− x
2−x to have Yi = 1. Hence the probability of having

at least 2 paths from root to nodes at level n/2 is at least
(
2x−1
x2

) (
1− x

2−x

)
.

23

If we input this in the previous expression, we finally get a probability of getting a path through T
at least equal (modulo ε factors) to

ˆ 1

1/2

(
2x− 1

x2

)((
2x− 1

x2

)(
1− x

2− x

)
+

(
1−

(
1−

(
2x− 1

x2

))2
)(

x

2− x

))
dx

As the ε factors disappear for the same reasons as before, we see that the value12 of this integral
is

2 + 27 · tanh−1
(
1
2

)
48

≈ 0.3506

5.4.3 Experimental upper bounds

As said before by doing a detailed case analysis on the tree of height 3, one can get an upper bound
of 39

70 . Computing the exact value for height 4 is feasible but prohibitive as there are more than 1012

permutations to test. By numerical simulations on trees of height 4 to 10 we get the following (for
10 batches of 107 tests):

Height 4 5 6 7 8 9 10
Empirical probability 0.504 0.473 0.453 0.441 0.431 0.423 0.418

maximal difference within the 10 batches 0.0023 0.0008 0.0018 0.0015 0.0013 0.0021 .0017

5.4.4 Empirical efficiency of modified ANS algorithm

Before getting the proof that the algorithm’s approximation ratio was Ω(log log n) we ran a sim-
ulation on Sn to check if the cost would indeed increase with n. This turned out to be true,
even though those results have to be taken with a grain of salt as computing it for big n was
not possible so we have a limited number of datapoints. All the code for this can be found at
https://github.com/koliaza/ANS-algorithm-counterexample-test.

For the following we used 10 batches of 104 runs.

n 3 4 5 6 7 8 9 10 11
Average approximation ratio 1.033 1.126 1.190 1.259 1.330 1.398 1.462 1.523 1.576

Maximal difference 0.145 0.066 0.021 0.011 0.007 0.008 0.008 0.007 0.010

For bigger values of n we only used 10 batches of 103 runs as the computation time took a few
hours on a i7@3.5GHz. This explains the increased difference between the batches .

n 12 13 14 15 16 17 18 19
Average approximation ratio 1.635 1.692 1.737 1.759 1.766 1.768 1.775 1.773

Maximal difference 0.034 0.039 0.030 0.035 0.037 0.047 0.030 0.040

12Checked with a computer algebra system (WolframAlpha),

24

 https://github.com/koliaza/ANS-algorithm-counterexample-test
 https://github.com/koliaza/ANS-algorithm-counterexample-test

	Problem and State of the art
	The Facility Location Problem Formally, this corresponds to Uncapacited Facility Location, but as the notion of capacities – the maximal number of clients attached to a facility – is completely outside the scope of this work we dispense with the ``Uncapacited'' in the acronyms.
	Completeness results
	Existing algorithms

	Non-Metric Dynamic Facility Location with Sum of Radii Cost
	Inapproximability
	Asymptotically optimal approximation algorithm
	Application to the non-metric sum of distances problem

	Metric Dynamic Facility Location with Sum of Radii Cost
	Modified ANS Algorithm
	Lower bound for the modified ANS algorithm

	Conclusion
	References
	Appendix
	Preprocessing
	Forcing the LP to find a mixed solution
	Better bound for Theorem 2
	Better bounds for Lemma 1

