TD 6: Routage

Université Paris 7 — L3MI — Systèmes et Réseaux

Routage par vecteur de distance (Bellamn-Ford distribué)

La table de routage du routeur X est un vecteur indiquant, pour chaque autre routeur Y du réseau, le prochain routeur Z (voisin de X) $Z = T_X[Y]$ auquel envoyer un paquet à destination de Y. Il est donc l'étape suivante sur la route de moindre coût (connue) allant vers Y, et le coût $c_X[Y]$ de cette route.

Le coût d'une route est la somme des coûts des laisons de cette route.

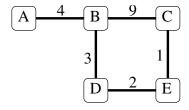
Initialement, chaque routeur X a sa table de routage T_X avec

$$-T_X[Y] = Y$$
 et $c_X[Y] = \text{CoûtLien}(X, Y)$ si Y est un voisin direct 1 de X .

$$-T_X[Y] = ?$$
 et $c_X[Y] = \infty$ sinon

Périodiquement (toutes les 30 secondes dans le protocole RIP), les routeurs voisins échangent leur table de routage. À réception de la table de routage de Z, le routeur X met à jour la sienne :

Pour tout Y

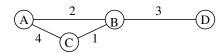

si CoûtLien
$$(X,Z)+c_Z[Y]< c_X[Y]$$
 ou si $T_X[Y]=Z$
$$T_X[Y]=Z$$

$$c_X[Y]=\text{CoûtLien}(X,Z)+c_Z[Y]$$
 fin si

fin pour

Enfin, si le coût d'un lien change à un moment donné, la valeur est modifiée immédiatement chez les deux routeurs aux extrémités.

Exercice 1. Essai


Faites tourner l'algorithme sur le graphe ci-dessous.

Exercice 2 : routage [examen 2012]

On considère l'algorithme de Bellman-Ford Distribué (par échange de table de routages).

À un certain instant on a le réseau de quatre routeurs et les tables de routage suivants :

Table de A				Table de B				Table de C				Table de D			
vers :	В	С	D	vers:	A	С	D	vers :	A	В	D	vers :	A	В	С
valeur:	5	4	8	valeur:	5	1	3	valeur:	4	1	4	valeur:	8	3	4

1. Un tel état est-il possible? Si oui décrire le scénario qui y conduit (qui a échangé avec qui dans quel ordre); si non expliquer pourquoi (en précisant ce qui impossible).

^{1.} on suppose que chaque routeur connaît le coût de la liaison à ses voisins

- 2. Il manque le champ prochain saut dans les tables de routage. L'ajouter avec sa valeur.
- 3. Comment le système réagit-il en cas de modification de la valeur d'un lien (augmentation ou diminution de la valeur)? Préciser s'il y a convergence ou non. En cas de problème, réfléchir aux solutions possibles (en modifiant l'algorithme).

Exercice 3. Convergence

- 1. Montrer que pour tous X et Y $c_X[Y]$ ne fait que diminuer au cours du temps.
- 2. Supposons que la plus courte route de X à Y ait un seul arc : X—Y. Montrez que cette route est correcte dès l'origine
- 3. Supposons que la plus courte route de A_1 à A_k soit $A_1, A_2, ... A_k$, et $c_{A_i}[A_k]$ est correct pour tout $i \in \{2, ... k\}$. Montrer que quand A_2 envoie sa table de routage à A_1 , A_1 calcule correctement le coût de la route minimale vers A_k .
- 4. En déduire la convergence de l'algorithme sur un réseau statique, en raisonnant par induction sur la longueur des routes de coût minimal.

Exercice 4. dynamique

Si le coût d'un lien augmente, que se passe-t-il? Donnez un exemple où le coût calculé des routes sera incorrect.

Exercice 5. L'horizon éclaté

L'horizon éclaté est un patch de l'algorithme précédent utilisé dans RIP. Il consiste faire mentir les routeurs.

Plus précisément, si X a un voisin Z, pour tout Y tel que $T_X[Y] = Z$, X transmet des fausses valeurs à Z: il transmet $T_X[Y] = ?$ et surtout $c_X[Y] = \infty$

- 1. Montrer que cela ne gène en rien la convergence de l'algorithme en version statique (les coûts ne changent pas)
- 2. Montrer que cela résout le problème de l'augmentation de coût dans l'exemple précédent
- 3. Il existe un contre-exemple : un réseau avec quatre routeurs seulement. Si un des routeurs tombe en panne, l'algorithme ne converge pas vers la bonne valeur (∞) pour les tables des trois autres. Trouvez-le!