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H

Introduced by Hamburger and Kuehn in 1963
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Warehouse Location

Minimizing opening and connection costs
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Dynamic case studied in [EMS 2014] (Introduced by
Berman and Odoni in 1982 for stochastic clients)
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On a en entrée :

Facility

R e e e Set C of n clients
o e Set F of m facilities
e Set T of t time steps
s G e Opening cost f and switching cost g
:Sjn"” e Distances d*(i, /) for each (facility, client) pair and
Approximation each time step

We seek to connect all clients and minimize costs
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Model studied by Charikar and Panigrahy in 2001 (static
case)
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Théoréme

[Dinur - Steurer, 2013] SET-COVER has no (1 —¢)logn
approzimation unless P = NP.

Which gives us :

Théoréme
Dynamic Facility Location Minimizing Sum of Radii has
no (1 —€)log n approzimation unless P = NP.

However this result doesn’t hold in the metric case.
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Three sets of boolean variables with :
e y! equals 1 iff j is open with radius r at time t

o xl-j- equals 1 iff j is connected to i at time t

° z,-j- equals 1 iff j connected to i between t — 1 and t

Minimize

D A R DI

it,r ij,t

With the constraints :

® Vj, t Zi X,‘ﬁ' > 1

o Vit X< 3 sanig) Vie
t—1

o Vi j,t>1 zij-inﬁ-—x,-j
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Preprocessing : choosing when
clients switch facilities

Lemme
(EMS) Preprocessing multiplies the cost by at most 2
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Algorithm 1 :
e Repeat log(Z) + 1 times

Facility

Lo e For each facility i, draw a; uniformly in [0,1]

SET-COVER e For each time step t, open facility /i with the biggest
radius R such that

SR %< Vi

Prepro r>R
log(nT)- -
‘Approximation

R e It’s equivalent to opening i with a radius distributed
along the yL, while maintaining timewise coherence

Open each facility with the biggest radius among the
log(Z) + 1 partial solutions
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Covering each client
Interval I of client j isn’t covered by facility 7 if there is
t € | such that
Z Vir
r=d*(ij)
By the LP’s second constraint, for t € /

f
E yE> mlnx 2 x,-lj
tel
r>d*(i,j)

The probability of being covered is then at least
1-— 1—x) ] > 2
)] 25
1

Repeating log(Z) + 1 times, each client-interval is covered
with probability at least %
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Total Cost

e Switching costs at most Z - g, by preprocessing at
most 2 - OPT
e Cost expectation by facility equal to > yi(r + f)
e Expecation of cost for partial solutions equal to OPT
e Recombining costs less than summing
Théoréme

Algorithm 1 is an O(log(Z)) approzimation

Corollaire
Algorithm 1 is an O(log(nT)) approzimation
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log n-Approximation

o If Z < n? use Algorithme 1

e KElse cut time in sequences such that n < Z; < 2n and
use ’Algorithm 1 on each sequence

Z, Z, z, 1,
-1 | | | | |
t=1 | 1 1 1 1 T
Vs " —_—
Algorithm 1 Algorithm 1 Algorithm 1 Algorithm 1

Théoréme
Algorithm 2 is an O(log n) approzimation
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There is an O(1) approximation for the sum of
distances [An, Norouzi-Fard, Svensson, 2014|

ERRY e We propose a natural adaptation of this algorithm

Location

Reduction from
SET-COVER

It can be at best a Q(loglog n) approximation

Counter-example :

F

2

Linear Pr
Prepro

log(nT)- F3

Approximation

log n-
Approximation

Metric case F
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Lemme
Finding such a branch has probability at least % .
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Combinatorial Lemma(2)
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Our results on Dynamic Facility Location :

Non-Metric (Algorithm /Hardness)

> Distances >~ Radii

. Static O(logn) / Qlogn) | 2logn / (1 —¢)logn

Dynamic | O(lognX) / Q(logn) | 4logn / (1 —¢)logn

Moreover, modified ANS cannot give better than
Q(log log n) for the sum of radii.

Conclusion
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Futur work

Remaining problems :
e Can we find an upper bound for modified ANS?

e Can we find a constant approximation algorithm in
the metric case?

Any questions ?
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SET-COVER problem

Set A with n elements

e Collection B of subsets of.A

e How to coverA with a minimal cardinality subset of
B?
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Conclusion

SET-COVER reduction

e A client j for each element a; € A
e A facility i for each set b; € B
e Set d(i,j) =1if aj € bj and d(i,j) = oo otherwise

® o 0 o O o ® -
SS

L S S L S L4 S

1 2 4 3
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Set tp =1
Greedily find the greatest tx;1 such that

g min x5 > 1
U —
- 2

t€ [t trra|

F cility

e Set for all [ty, txr1]
Approximation o~ def i
R imation L=2- min xf
J tethesteqa
Conclusion ° And

def
t 161 t
-yll’ 2 '.ylr
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Proof of the combinatorial
lemma

e The root’s key is in the top 1/3 with probability 1/3
e If we only take an e proportion of nodes :
e Each node’s key has probability at least % — € to be
smaller than the root’s.
e We can find a path through a subtree of height 3
with constant probability
e From this node at height 7 we can find an other path
of length 5 hence a branch with the property
e We handle dependency and the value of € by only
looking at an arbitrarily small proportion of nodes

Lemme
A good branch exists with probability at least

24+ 27 -tanh™ ! (1
438" (2) ~ 0.3506
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Modified ANS Algorithm

Take an LP solution

Use the preprocessing

Draw a; € R for each facility with distribution along
e—aix

Draw an uniform permutation of clients

Draw an arrow from client j to facility / with minimal
a; with x,-j- >0

Draw an arrow from each facility to the client of
lowest rank such that xj; > 0

Assign each client to the facility in the loop of
length2 you get by following the arrows
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Series of 10 groups of 107 instances for the combinatorial
lemma :

Height ) 6 7
Observed probability | 0.473 | 0.453 | 0.441
Spread over 10 groups | 0.0008 | 0.0018 | 0.0015

Height 8 9 10
Observed probability | 0.431 | 0.423 | 0.418
Olssriivrefom Spread over 10 groups | 0.0013 | 0.0021 | 0.0017

R
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