N.K.Blanchard, N.Schabanel

Presentation of the problem

Facility Location Reduction from SET-COVER

Algorithms in the general (non-metric)

Linear Program
Preprocessing
log(nT)Approximation
log n-

Metric cas

Conclusion

Dynamic Facility Location: Minimizing Sum of Radii

N.K.Blanchard, N.Schabanel

Talk at GT COA November 23rd, 2015

23 novembre 2015

Presentation of the problem Facility Location Reduction from

Algorithms in the general (non-metric)

Linear Program
Preprocessing
log(nT)Approximation
log n-

Metric cas

Conclusior

Plan of the talk

1 Presentation of the problem
Facility Location
Reduction from SET-COVER

- 2 Algorithms in the general (non-metric) case Linear Program Preprocessing log(nT)-Approximation log n-Approximation
- 3 Metric case
- 4 Conclusion

N.K.Blanchard, N.Schabanel

$\begin{array}{c} \textbf{Presentation of} \\ \textbf{the problem} \end{array}$

Facility Location Reduction from SET-COVER

Algorithms in the general (non-metric)

Linear Program
Preprocessing
log(nT)Approximation
log n-

N # - 4 - 1 - - - - -

Conclusion

Presentation of the problem

N.K.Blanchard, N.Schabanel

Presentation of the problem

Facility Location Reduction from SET-COVER

Algorithms in the general (non-metric) case

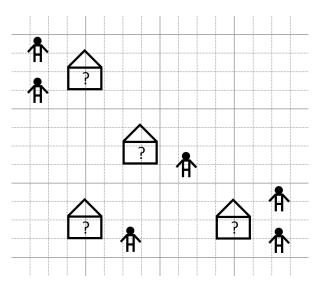
Linear Program
Preprocessing
log(nT)Approximation

Approximation

Metric cas

Conclusion

Warehouse Location



Introduced by Hamburger and Kuehn in 1963

N.K.Blanchard, N.Schabanel

Presentation of the problem Facility

Location
Reduction from
SET-COVER

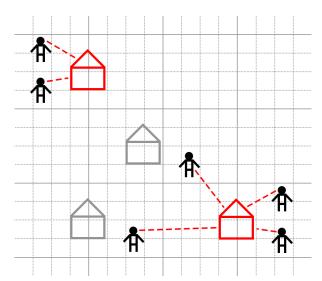
Algorithms in the general (non-metric) case

Linear Program
Preprocessing
log(nT)Approximation

-- P P - - -----

Metric cas

Warehouse Location



Minimizing opening and connection costs

N.K.Blanchard, N.Schabanel

Presentation o

Facility Location Reduction from SET-COVER

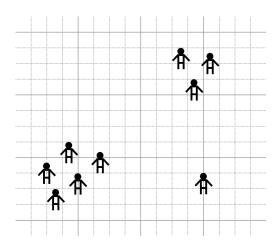
Algorithms in the general (non-metric)

Preprocessing
log(nT)Approximation
log nApproximation

Metric cas

Conclusion

Use for Clustering



N.K.Blanchard, N.Schabanel

Presentation o

Facility Location Reduction from

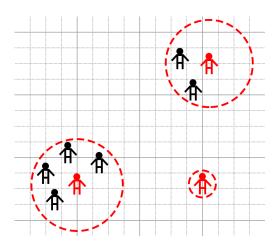
Algorithms in the general (non-metric)

Linear Program
Preprocessing
log(nT)Approximation
log nApproximation

Metric cas

Conclusion

Use for Clustering



N.K.Blanchard, N.Schabanel

Presentation o

Facility Location Reduction from

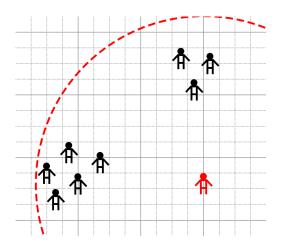
Algorithms in the general (non-metric)

Linear Program
Preprocessing
log(nT)Approximation
log nApproximation

3.6 - 4 - 1 - - - - -

Conclusion

Use for Clustering



N.K.Blanchard, N.Schabanel

the problem

Facility Location Reduction from

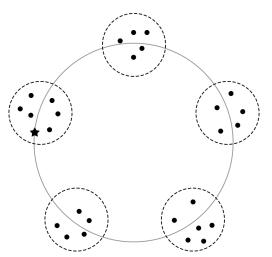
Algorithms in the general (non-metric)

Linear Program
Preprocessing
log(nT)Approximation
log n-

-- P P - - -----

Conclusion

Dynamic aspect



N.K.Blanchard, N.Schabanel

Presentation o the problem

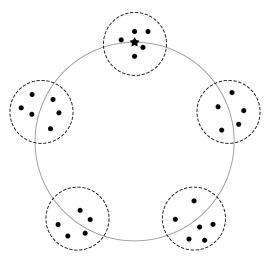
Facility Location Reduction from

Algorithms in the general (non-metric)

Linear Program
Preprocessing
log(nT)Approximation
log n-

Conclusion

Dynamic aspect



N.K.Blanchard, N.Schabanel

the problem

Facility

Location

Reduction from SET-COVER

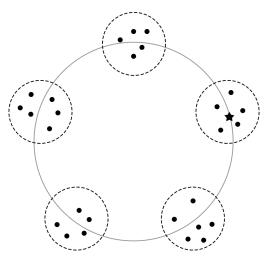
Algorithms in the general (non-metric) case

Linear Program
Preprocessing
log(nT)Approximation
log n-

-- Pr Pr -------

Conclusion

Dynamic aspect



N.K.Blanchard, N.Schabanel

the problem
Facility
Location

Reduction from SET-COVER Algorithms in

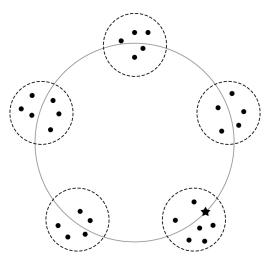
the general (non-metric) case

Preprocessing log(nT)Approximation log n-

Metric cas

Conclusion

Dynamic aspect



N.K.Blanchard, N.Schabanel

Presentation o the problem

Facility Location Reduction from

Algorithms in the general (non-metric)

Linear Program
Preprocessing
log(nT)Approximation
log n-

Dynamic aspect



N.K.Blanchard, N.Schabanel

Presentation o the problem

Facility Location Reduction from

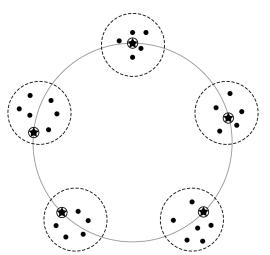
Algorithms in the general (non-metric) case

Linear Program
Preprocessing
log(nT)Approximation
log n-

Metric cas

Conclusion

Dynamic aspect



Presentation o the problem

Facility Location

Reduction from SET-COVER

Algorithms in the general (non-metric) case

Preprocessing log(nT)Approximation log nApproximation

Metric cas

Conclusior

Definitions

On a en entrée :

- Set \mathcal{C} of n clients
- Set \mathcal{F} of m facilities
- Set \mathcal{T} of t time steps
- Opening cost f and switching cost g
- Distances $d^t(i,j)$ for each (facility, client) pair and each time step

We seek to connect all clients and minimize costs

N.K.Blanchard, N.Schabanel

Presentation o the problem

Facility Location Reduction from SET-COVER

Algorithms in the general (non-metric)

Linear Program
Preprocessing
log(nT)Approximation
log n-

Metric cas

Conclusion

Problem with the cost function: Sum of distances

- • •
- F₀
- • •

N.K.Blanchard, N.Schabanel

Presentation of the problem

Facility Location Reduction from

Algorithms in the general (non-metric)

Linear Program
Preprocessing
log(nT)Approximation
log n-

No. Auto Co.

Conclusion

Problem with the cost function: Sum of distances

N.K.Blanchard, N.Schabanel

Presentation of the problem

Facility Location Reduction from

Algorithms in the general (non-metric)

Linear Program
Preprocessing
log(nT)Approximation
log nApproximation

Metric case

Conclusion

New cost function: Sum of radii

Model studied by Charikar and Panigrahy in 2001 (static case)

N.K.Blanchard, N.Schabanel

Presentation o the problem

Facility Location Reduction from

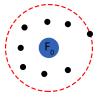
Algorithms in the general (non-metric)

Linear Program
Preprocessing
log(nT)Approximation
log nApproximation

Metric cas

Conclusion

New cost function: Sum of radii



Model studied by Charikar and Panigrahy in 2001 (static case)

N.K.Blanchard, N.Schabanel

Presentation o

Location
Reduction from
SET-COVER

Algorithms in the general (non-metric)

Linear Program
Preprocessing
log(nT)Approximation
log n-

N # - 4 - 1 - - - - -

Conclusion

Reduction from SET-COVER

Presentation of the problem Facility Location Reduction from SET-COVER

Algorithms in the general (non-metric) case

Linear Program
Preprocessing
log(nT)Approximation
log nApproximation

Metric cas

Conclusio

Reduction from SET-COVER

Théorème

[Dinur - Steurer, 2013] SET-COVER has no $(1 - \varepsilon) \log n$ approximation unless P = NP.

Which gives us:

Théorème

Dynamic Facility Location Minimizing Sum of Radii has no $(1-\varepsilon)\log n$ approximation unless P=NP.

However this result doesn't hold in the metric case.

N.K.Blanchard, N.Schabanel

the problem

Facility

Facility Location Reduction from SET-COVER

Algorithms in the general (non-metric)

Linear Program
Preprocessing
log(nT)Approximation
log n-

N # - 4 - 1 - - - - -

Conclusion

Algorithms in the general (non-metric) case

Presentation of the problem Facility Location Reduction from

Algorithms in the general (non-metric) case

Linear Program
Preprocessing
log(nT)Approximation
log nApproximation

Metric cas

Conclusion

Formulation en Programme Linéaire

Three sets of boolean variables with:

- y_{ir}^t equals 1 iff i is open with radius r at time t
- x_{ij}^t equals 1 iff j is connected to i at time t
- z_{ij}^t equals 1 iff j connected to i between t-1 and t

Minimize

$$\sum_{i,t,r} y_{ir}^t \cdot (f+r) + g \sum_{i,j,t} z_{ij}^t$$

With the constraints:

- $\forall j, t \ \sum_{i} x_{ij}^t \geq 1$
- $\forall i, j, t \ x_{ij}^t \leq \sum_{r>d^t(i,j)} y_{ir}^t$
- $\forall i, j, t \geq 1$ $z_{ij}^t \geq x_{ij}^t x_{ij}^{t-1}$

N.K.Blanchard, N.Schabanel

Presentation of the problem Facility Location Reduction from

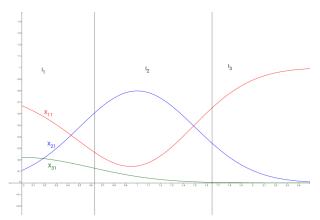
Algorithms is the general (non-metric)

Preprocessing log(nT)Approximation log n-

Metric cas

Conclusion

Preprocessing: choosing when clients switch facilities



Lemme

(EMS) Preprocessing multiplies the cost by at most 2

Presentation o the problem Facility Location Reduction from SET-COVER

Algorithms in the general (non-metric)

Linear Program
Preprocessing
log(nT)-

Approximation log n-

Metric cas

Conclusion

Opening facilities

Algorithm 1:

- Repeat log(Z) + 1 times
 - For each facility i, draw a_i uniformly in [0,1]
 - For each time step t, open facility i with the biggest radius R such that

$$a_i \leq \sum_{r \geq R} y_{ir}^t$$

It's equivalent to opening i with a radius distributed along the y_{ir}^t , while maintaining timewise coherence

• Open each facility with the biggest radius among the log(Z) + 1 partial solutions

Presentation of the problem Facility Location Reduction from

Algorithms in the general (non-metric) case

Linear Program
Preprocessing
log(nT)Approximation

Approximation

log nApproximation

No. Audio

Conclusion

Covering each client

Interval I of client j isn't covered by facility i if there is $t \in I$ such that

$$a_i \geq \sum_{r \geq d^t(i,j)} y_{ir}^t$$

By the LP's second constraint, for $t \in I$

$$\sum_{r \geq d^t(i,j)} y_{ir}^t \geq \min_{t \in I} x_{ij}^t \stackrel{\text{def}}{=} x_{ij}^I$$

The probability of being covered is then at least

$$1 - \left(\prod_{i} \left(1 - x_{ij}^{\prime}\right)\right) \geq \frac{1}{2}$$

Repeating $\log(Z) + 1$ times, each client-interval is covered with probability at least $\frac{1}{2}$

Presentation of the problem Facility Location Reduction from SET-COVER

Algorithms in the general (non-metric) case

Linear Program
Preprocessing

log(nT)-Approximation log n-

Approximat

Metric cas

Conclusion

Total Cost

- Switching costs at most $Z \cdot g$, by preprocessing at most $2 \cdot OPT$
- Cost expectation by facility equal to $\sum y_{ir}^t(r+f)$
- Expectation of cost for partial solutions equal to OPT
- Recombining costs less than summing

Théorème

Algorithm 1 is an $O(\log(Z))$ approximation

Corollaire

Algorithm 1 is an $O(\log(nT))$ approximation

Presentation of the problem Facility Location Reduction from

Algorithms in the general (non-metric) case

Linear Program
Preprocessing
log(nT)Approximation

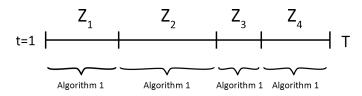
Approximation

Metric cas

Conclusio

log *n*-Approximation

- If $Z \leq n^2$ use Algorithme 1
- Else cut time in sequences such that $n \le Z_i < 2n$ and use 'Algorithm 1 on each sequence



Théorème

Algorithm 2 is an $O(\log n)$ approximation

N.K.Blanchard, N.Schabanel

Presentation of the problem

Location
Reduction from
SET-COVER

Algorithms in the general (non-metric) case

Linear Program
Preprocessing
log(nT)Approximation
log nApproximation

Metric case

Conclusion

Metric case

N.K.Blanchard, N.Schabanel

Presentation of the problem Facility Location Reduction from

Algorithms in the general (non-metric)

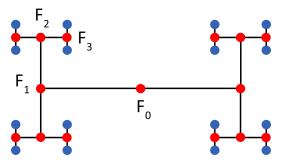
Linear Program
Preprocessing
log(nT)Approximation
log n-

Metric case

Conclusion

ANS Algorithm

- There is an O(1) approximation for the sum of distances [An, Norouzi-Fard, Svensson, 2014]
- We propose a natural adaptation of this algorithm
- It can be at best a $\Omega(\log \log n)$ approximation
- Counter-example :



N.K.Blanchard, N.Schabanel

the problem
Facility

Facility Location Reduction from SET-COVER

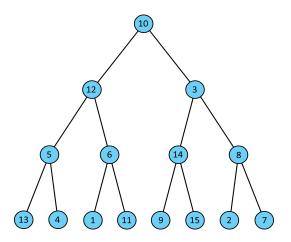
Algorithms in the general (non-metric)

Linear Program
Preprocessing
log(nT)Approximation
log n-

Metric case

Conclusion

Combinatorial Lemma



N.K.Blanchard, N.Schabanel

Presentation of the problem Facility Location Reduction from

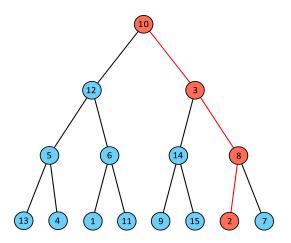
Algorithms in the general (non-metric)

Linear Program
Preprocessing
log(nT)Approximation
log n-

Metric case

Conclusion

Combinatorial Lemma



Lemme

Finding such a branch has probability at least $\frac{1}{3}$.

N.K.Blanchard, N.Schabanel

the problem

Facility

Facility Location Reduction from SET-COVER

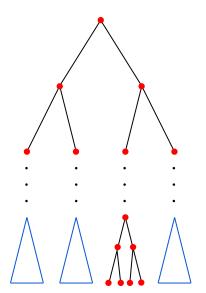
Algorithms in the general (non-metric)

Preprocessing log(nT)Approximation

Approximat:

Metric case

Combinatorial Lemma(2)



N.K.Blanchard, N.Schabanel

Presentation of the problem

Facility Location Reduction from SET-COVER

Algorithms in the general (non-metric)

Linear Program
Preprocessing
log(nT)Approximation
log n-

Matric case

Conclusion

Conclusion

Presentation of the problem Facility Location Reduction from SET-COVER

Algorithms in the general (non-metric) case

Linear Program
Preprocessing
log(nT)Approximation
log nApproximation

Metric cas

Conclusion

Conclusion

Our results on Dynamic Facility Location:

	Non-Metric (Algorithm/Hardness)		
\sum Distances		∑ Radii	
Static	$O(\log n) / \Omega(\log n)$	$2\log n / (1-\varepsilon)\log n$	
Dynamic	$O(\log nX) / \Omega(\log n)$	$4\log n / (1-\varepsilon)\log n$	

Moreover, modified ANS cannot give better than $\Omega(\log \log n)$ for the sum of radii.

Algorithms is the general (non-metric) case

Preprocessing log(nT)-Approximation log n-Approximation

Metric cas

Conclusion

Futur work

Remaining problems:

- Can we find an upper bound for modified ANS?
- Can we find a constant approximation algorithm in the metric case?

Any questions?

N.K.Blanchard, N.Schabanel

Presentation of the problem Facility Location Reduction from

SET-COVER Algorithms i

the general (non-metric) case

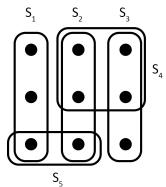
Preprocessing log(nT)Approximation log n-

Metric cas

Conclusion

SET-COVER problem

- Set \mathcal{A} with n elements
- Collection \mathcal{B} of subsets of \mathcal{A}
- How to cover A with a minimal cardinality subset of B?



the problem
Facility
Location
Reduction from

Algorithms is the general (non-metric)

Linear Program
Preprocessing
log(nT)Approximation
log n-

Metric cas

Conclusion

SET-COVER reduction

- A client j for each element $a_i \in A$
- A facility i for each set $b_i \in \mathcal{B}$
- Set d(i,j) = 1 if $a_j \in b_i$ and $d(i,j) = \infty$ otherwise

Facility Location Reduction from SET-COVER

Algorithms in the general (non-metric) case

Linear Program
Preprocessing
log(nT)Approximation
log nApproximation

Metric case

Conclusion

Preprocessing

- Set $t_0 = 1$
- Greedily find the greatest t_{k+1} such that

$$\sum_{i} \min_{t \in [t_k, t_{k+1}[} x_{ij}^t \ge \frac{1}{2}$$

• Set for all $[t_k, t_{k+1}]$

$$\widehat{x_{ij}^t} \stackrel{\text{def}}{=} 2 \cdot \min_{t \in [t_k, t_{k+1}[} x_{ij}^t$$

• And

$$\widehat{y_{ir}^t} \stackrel{\text{def}}{=} 2 \cdot y_{ir}^t$$

Presentation of the problem Facility Location Reduction from SET-COVER

Algorithms in the general (non-metric) case

Linear Program
Preprocessing
log(nT)Approximation
log nApproximation

Metric case

Conclusion

Proof of the combinatorial lemma

- The root's key is in the top 1/3 with probability 1/3
- If we only take an ε proportion of nodes :
 - Each node's key has probability at least $\frac{2}{3} \varepsilon$ to be smaller than the root's.
 - We can find a path through a subtree of height $\frac{n}{2}$ with constant probability
 - From this node at height $\frac{n}{2}$ we can find an other path of length $\frac{n}{2}$ hence a branch with the property
- We handle dependency and the value of ε by only looking at an arbitrarily small proportion of nodes

Lemme

A good branch exists with probability at least

$$\frac{2+27\cdot \tanh^{-1}\left(\frac{1}{2}\right)}{48}\approx 0.3506$$

Presentation of the problem Facility Location Reduction from

Algorithms in the general (non-metric) case

Linear Program
Preprocessing
log(nT)Approximation
Approximation

Metric cas

Conclusion

Modified ANS Algorithm

- Take an LP solution
- Use the preprocessing
- Draw $a_i \in \mathbb{R}$ for each facility with distribution along $e^{-a_i x}$
- Draw an uniform permutation of clients
- Draw an arrow from client j to facility i with minimal a_i with $x_{ii}^t > 0$
- Draw an arrow from each facility to the client of lowest rank such that $x_{ii}^t > 0$
- Assign each client to the facility in the loop of length2 you get by following the arrows

Presentation of the problem Facility Location Reduction from SET-COVER

Algorithms in the general (non-metric) case

Linear Program
Preprocessing
log(nT)Approximation
log nApproximation

Metric cas

Conclusion

Experimental results

Series of 10 groups of 10^7 instances for the combinatorial lemma :

Height	5	6	7
Observed probability	0.473	0.453	0.441
Spread over 10 groups	0.0008	0.0018	0.0015

Height	8	9	10
Observed probability	0.431	0.423	0.418
Spread over 10 groups	0.0013	0.0021	0.0017