Présentation du problème

Réduction de SET-COVER

Algorithmes dans le cas général

Programme Linéair

Preprocessing

ripproximition

Coomátrio

Conclusion

Dynamic Facility Location: Minimizing Sum of Radii

N.Blanchard

Stage au Laboratoire d'Informatique Algorithmique, Fondements et Applications Sous la direction de Nicolas Schabanel

3 septembre 2015

Présentation du problème

Réduction de SET-COVER

Algorithmes dans le cas général (non-métriq

Programme Linéair

log(nT)-Approximation

log n-Approximatio

Cus meniqu

Conclusio

Plan de la présentation

1 Présentation du problème Facility Location

Réduction de SET-COVER

2 Algorithmes dans le cas général (non-métrique)

Programme Linéaire Preprocessing log(*nT*)-Approximation log *n*-Approximation

- 3 Cas métrique
- 4 Conclusion

N.Blanchard

Présentation du problème

Réduction de SET-COVER

Algorithmes dans le cas général

(non-metrique

Programme Linéair

rieprocessing

log(nT)-

Approximation

Cas métrique

Conclusion

Présentation du problème

N.Blanchard

Présentation du

Facility Location
Réduction de

Algorithmes dans le cas

(non-métrique

Drogramma I inágir

Preprocessing

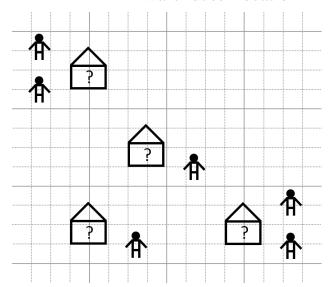
log(nT)-

log n. Approximati

Cas métrique

Conclusio

Warehouse Location



Introduit par Hamburger et Kuehn en 1963

N.Blanchard

Présentation de problème

Facility Location Réduction de SET-COVER

Algorithmes dans le cas général

(non-métrique

Programme Linéair

Preprocessing

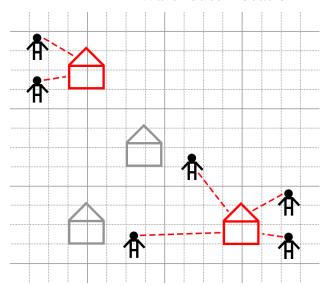
Approximation

log n-Approximation

Cas métrique

Conclusion

Warehouse Location



Minimiser les coûts d'ouvertures plus les coûts de connection

Présentation du

Facility Location
Réduction de

Algorithme dans le cas général

B 11.7.1

1 Togramme Linea

Preprocessing

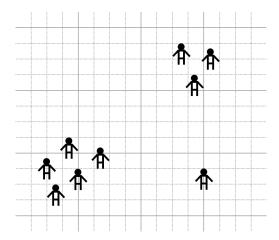
log(nT)-

1--- A-----

Cas métriqu

Conclusion

Application au Clustering



Présentation du

Réduction de

Algorithme dans le cas général

Programme Linéai

Drangoossing

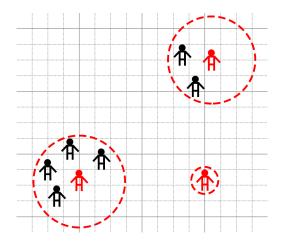
1 reprocessing

Approximation

10B111FF

Cas meurqu

Application au Clustering



Présentation du

Réduction de

Algorithme dans le cas général

Programma I inási

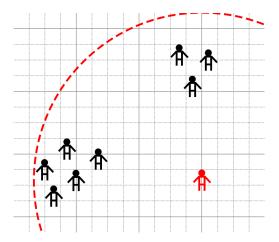
1 1051mmile Emem

Preprocessing

log(nT)-

.

Application au Clustering



Présentation d problème

Réduction de

Algorithmes dans le cas général

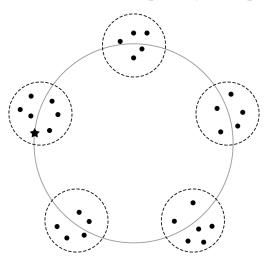
(Hon-metrique

Preprocessing

Approximation

Conclusion

Aspect dynamique



Présentation d problème

Réduction de

Algorithmes dans le cas général

(non-metrique

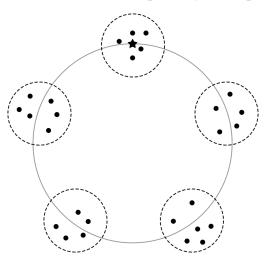
Preprocessing

 $\log(nT)$ -

log n-Approximation

Cas metriqu

Aspect dynamique



Présentation de problème

Réduction de

Algorithmes dans le cas général

(non-meurque

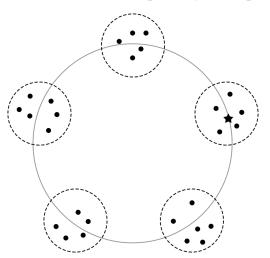
Preprocessing

Approximation

Cas métrion

Conclusion

Aspect dynamique



Présentation d problème

Réduction de

Algorithmes dans le cas général

(non-metrique

Preprocessing

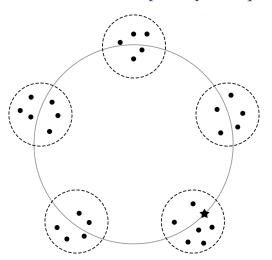
log(nT)-

log n-Approximation

Cas métriqu

Conclusion

Aspect dynamique



Présentation d

Facility Location Réduction de

Algorithmes dans le cas général

n

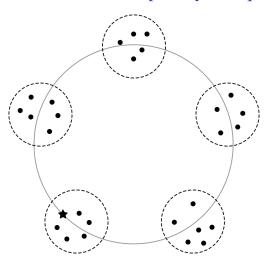
Preprocessing

Approximation

Coc mátrios

Conclusion

Aspect dynamique



Présentation d

Réduction de

Algorithmes dans le cas général

-

Preprocessing

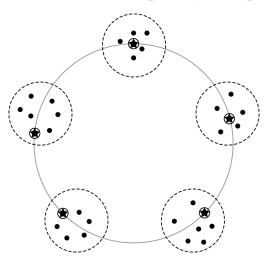
Approximation

log n-Approximation

Cas metriqu

Conclusion

Aspect dynamique



Algorithmes dans le cas général (non-métrique

Preprocessing
log(nT)Approximation

log n-Approximatio

Cas métrique

Conclusion

Définition du problème

On a en entrée :

- Un ensemble \mathscr{C} de n clients
- Un ensemble \mathscr{F} de m services (facilities)
- Un ensemble \mathcal{T} de t pas de temps
- Un coût d'ouverture f et un coût de changement g
- Des distances $d^t(i,j)$ pour chaque paire (service, client) et chaque pas de temps

On veut connecter tous les clients en minimisant les coûts.

N.Blanchard

Présentation d problème

Réduction de

Algorithmes dans le cas général

Programme Linés

i rogramme Emean

Preprocessing

Approximation

log n-Approximatio

Cas métriqu

Conclusion

Problème avec l'objectif Somme des distances

Présentation du

Réduction de

Algorithmes dans le cas général

Programme I inési

1 Togramme Emea

Preprocessing

Approximation

Conclusion

Problème avec l'objectif Somme des distances

N.Blanchard

Présentation de problème

Réduction de SET-COVER

Algorithmes dans le cas général

Programme I inési

Preprocessing

log(nT)-

log n-Approximatio

Cas métriqu

Conclusio

Nouvelle fonction objectif: Somme des rayons

Modèle étudié par Charikar et Panigrahy en 2001 (en statique)

N.Blanchard

Présentation de problème

Réduction de

Algorithme dans le cas général

Programma I inánim

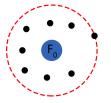
log(nT)-

1---- 1-----

Cas métriqu

Conclusion

Nouvelle fonction objectif: Somme des rayons



Modèle étudié par Charikar et Panigrahy en 2001 (en statique)

N.Blanchard

Présentation du problème

Réduction de SET-COVER

Algorithmes dans le cas général

B 11.7.1

Prenrocessing

log(nT)-

Approximation

Cas métrique

Conclusion

Réduction de SET-COVER

Présentation du problème

Réduction de SET-COVER

Algorithmes dans le cas général (non-métrique

Programme Linéai

log(nT)-Approximation

Cas métrique

Conclusi

Réduction de SET-COVER

Théorème

[Dinur - Steurer, 2013] SET-COVER n'admet pas de $(1 - \varepsilon) \log n$ approximation à moins que $\mathbf{P} = \mathbf{NP}$.

Ce qui permet de montrer :

Théorème

Dynamic Facility Location Minimisant la Somme des Rayons n'admet pas de $(1-\varepsilon)\log n$ approximation dans le cas non-métrique à moins que $\mathbf{P}=\mathbf{NP}$.

Dans le cas métrique ce résultat ne tient pas.

Algorithmes dans le cas général (non-métrique)

Algorithmes dans le cas général (non-métrique)

Réduction de SET-COVER

dans le cas général (non-métrique

Programme Linéaire

log (nT)-Approximation

Cas métriqu

Formulation en Programme Linéaire

Toutes les variables valent 0 ou 1, avec :

- y_{ir}^t vaut 1 si i est ouverte avec rayon r au temps t
- x_{ij}^t vaut 1 si j est connecté à i au temps t
- z_{ij}^t vaut 1 si j s'est connecté à i entre les temps t-1 et t

On minimise

$$\sum_{i,t,r} y_{ir}^t \cdot (f+r) + g \sum_{i,j,t} z_{ij}^t$$

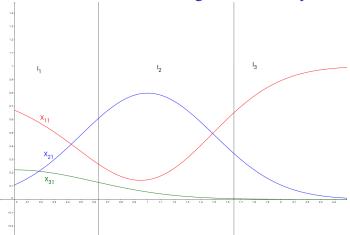
Avec les contraintes :

- $\forall j, t \; \sum_i x_{ij}^t \geq 1$
- $\forall i, j, t \ x_{ij}^t \leq \sum_{r \geq d^t(i,j)} y_{ir}^t$
- $\forall i, j, t \geq 1 \ z_{ii}^t \geq x_{ii}^t x_{ii}^{t-1}$

N.Blanchard

Preprocessing

Preprocessing: décider quand les clients changent de facility



Lemme

(EMS) Le preprocessing double au plus le coût de la solution

Présentation du problème

Réduction de SET-COVER

Algorithmes dans le cas général

Programme Linéaire

Preprocessing log(nT)-

Approximation

Cae mátrias

1

Ouverture des facilities

Algorithme 1:

- On répète ce qui suit log(Z) + 1 fois
 - Pour chaque facility i, on tire une variable a_i uniformément dans [0, 1]
 - Pour chaque pas de temps t, on ouvre chaque facility i avec le plus grand rayon R tel que

$$a_i \leq \sum_{r \geq R} y_{ir}^t$$

Cela revient à ouvrir i avec un rayon suivant la distribution des y_{ir}^t , en maintenant une cohérence dans le temps

• On ouvre chaque facility avec le plus grand rayon parmi les log(Z) + 1 solutions partielles

Programme Linéair

 $\log(nT)$ Approximation

Co o mo étai ou

Cas meniqu

Couverture d'un client

Un intervalle I d'un client j n'est pas couvert par une facility i s'il existe $t \in I$

$$a_i \geq \sum_{r \geq d^t(i,j)} y_{ir}^t$$

Or, par la deuxième contrainte du LP, pour $t \in I$

$$\sum_{r \geq d^t(i,j)} y^t_{ir} \geq \min_{t \in I} x^t_{ij} \stackrel{\text{def}}{=} x^I_{ij}$$

La probabilité d'être couvert par une solution partielle est au moins

$$1 - \left(\prod_{i} \left(1 - x_{ij}^{I}\right)\right) \ge \frac{1}{2}$$

En répetant log(Z) + 1 fois tous les clients sont couverts sur tous leurs intervalles avec probabilité $\frac{1}{2}$

Réduction de SET-COVER

Algorithme dans le cas général

Programme Linéaire Preprocessing

log(nT)-Approximation

log n-Approximatio

Conclusi

Coût total

- Coût de changement au plus $Z \cdot g$, par le préprocessing au plus égal à $2 \cdot OPT$
- Espérance de coût par facility égale à $\sum y_{ir}^t(r+f)$
- Espérance des coûts des solutions partielles égale à OPT
- Recombiner coûte moins que la somme des coûts partiels

Théorème

L'algorithme 1 est une $O(\log(Z))$ approximation

Corollaire

L'algorithme 1 est une $O(\log(nT))$ approximation

Présentation du problème

Réduction de SET-COVER

Algorithmes dans le cas général (non-métrique

Programme Linéair

Preprocessing

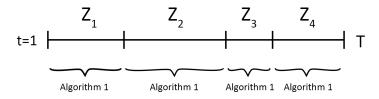
log n-Approximation

Cas métriqu

Conclusion

log *n*-Approximation

- Si $Z \le n^2$ lancer l'Algorithme 1
- Sinon découper en séquences telles que $n \le Z_i < 2n$ et lancer l'Algorithme 1 sur chaque séquence



Théorème

L'Algorithme 2 est une $O(\log n)$ approximation.

N.Blanchard

Présentation du problème

Réduction de SET-COVER

Algorithmes dans le cas général

(non-metrique)

Programme Line

Preprocessing

Approximation

Cas métrique

Conclusion

Cas métrique

Présentation du problème

Réduction de SET-COVER

Algorithmes dans le cas général

Programme Linéair

Preprocessing log(nT)-

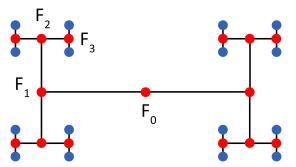
log n-Approximation

Cas métrique

Conclusion

Algorithme ANS

- Il existe une O(1) approximation pour la somme des distances [An, Norouzi-Fard, Svensson, 2014]
- On a proposé une adaptation naturelle de cet algorithme
- C'est hélas au mieux une $\Omega(\log \log n)$ approximation
- Contre-exemple :



N.Blanchard

Présentation du

Réduction de

Algorithme dans le cas général

(non-métriqu

Programme Linéa

Preprocessing

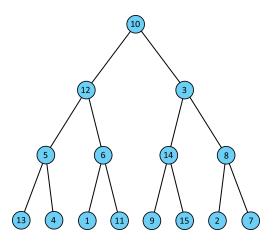
log(nT)-

1--- A----i---

Cas métrique

Conclusion

Lemme combinatoire



N.Blanchard

Présentation di

Réduction de

Algorithme dans le cas général

(non-metrique

Programme Liné

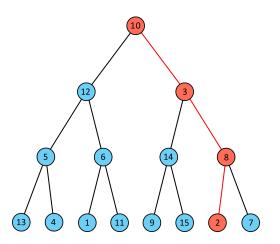
 $\log(nT)$ -

log n-Approximati

Cas métrique

Conclusion

Lemme combinatoire



Lemme

La probabilité de trouver une telle branche est au moins $\frac{1}{3}$.

Présentation du problème

Réduction de

Algorithmes dans le cas général

(mon mounda

Programme Linéair

Danasan annian

 $log(nT)_{-}$

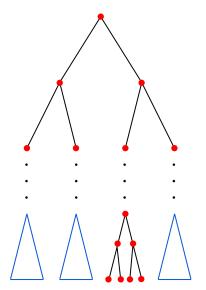
Approximation

logn-Approxima

Cas métrique

0 1 1

Lemme combinatoire (2)



N.Blanchard

Présentation du problème

Réduction de SET-COVER

Algorithmes dans le cas général

(non-métrique)

Programme Lin

Preprocessing

Approximation

Conclusion

Conclusion

Facility Loca Réduction de SET-COVER

dans le cas général (non-métrique

Programme Lineau
Preprocessing

Approximation log n-Approximatio

Cas métriqu

Conclusion

Conclusion

Nos résultats sur le Dynamic Facility Location :

	Non-Métrique (algorithme/difficulté)		
	∑ Distances	∑ Rayons	
Statique	$O(\log n) / \Omega(\log n)$	$2\log n / (1-\varepsilon)\log n$	
Dynamique	$O(\log n)$ / $\Omega(\log n)$	$4\log n / (1-\varepsilon)\log n$	

De plus, notre ANS modifié ne peut pas donner une approximation meilleure que $\Omega(\log \log n)$ pour la somme des rayons.

Réduction de SET-COVER

dans le cas général (non-métrique

Preprocessing

log(nT)Approximation

Cas métrique

Conclusion

Travail futur

Questions restantes:

- Peut-on prouver une borne supérieure pour le facteur d'approximation d'ANS modifié?
- Peut-on trouver un algorithme en approximation constante pour le cas métrique ?

Y-a-t'il des questions?

Présentation du problème

Réduction de SET-COVER

dans le cas général (non-métrique)

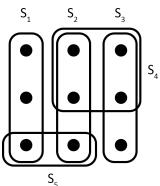
Programme Linéair

log(nT)-Approximation

Conclusion

Problème SET-COVER

- Un ensemble \mathscr{A} à *n* éléments
- Une collection \mathscr{B} de sous-ensembles de \mathscr{A}
- Comment couvrir \mathscr{A} avec un sous-ensemble de \mathscr{B} de cardinalité minimale ?



Présentation d problème

Réduction de SET-COVER

Algorithmes dans le cas général

Programme Linéai

Preprocessing log(nT)-

log n-Approximation

Cas métriqu

Conclusion

Réduction de SET-COVER

- On prend un client j pour chaque élément $a_i \in \mathcal{A}$
- On prend une facility i pour chaque élément $b_j \in \mathcal{B}$
- On fixe d(i,j) = 1 si $a_j \in b_i$ et $d(i,j) = \infty$ sinon

Réduction de SET-COVER

Algorithmes dans le cas général

Programme Linéai

log(nT)-

log n-Approximatio

Cas métrique

Conclusion

Preprocessing

- On fixe $t_0 = 1$
- On cherche de manière gloutonne le plus grand t_{k+1} possible tel que

$$\sum_{i} \min_{t \in [t_k, t_{k+1}]} x_{ij}^t \ge \frac{1}{2}$$

• Enfin on fixe pour tout intervalle $[t_k, t_{k+1}]$

$$\widehat{x_{ij}^t} \stackrel{\text{def}}{=} 2 \cdot \min_{t \in [t_k, t_{k+1}]} x_{ij}^t$$

• Et

$$\hat{y_{ir}^t} \stackrel{\text{def}}{=} 2 \cdot y_{ir}^t$$

Présentation du problème

Réduction de SET-COVER

dans le cas général (non-métrique

Programme Linéaire Preprocessing

log(nT)Approximation log n-Approximation

Cas métrique

Conclusion

Preuve du lemme combinatoire

- La racine a une clé dans le 1/3 supérieur avec probabilité 1/3
- Si on regarde une proportion ε des noeuds :
 - Chaque noeud a donc probabilité $\frac{2}{3} \varepsilon$ d'être inférieur à la racine
 - On peut trouver un chemin à travers un arbre de hauteur ⁿ/₂ avec probabilité constante
 - À partir de ce noeud à hauteur ⁿ/₂ on peut trouver un deuxième chemin de longueur ⁿ/₂ et donc une branche satisfaisant la propriété
- On gère la dépendance et donc la valeur de ε en ne regardant qu'une petite proportion des noeuds.

Lemme

Une bonne branche existe avec probabilité au moins

$$\frac{2+27\cdot tanh^{-1}\left(\frac{1}{2}\right)}{48}\approx 0.3506$$

Présentation du problème

Réduction de SET-COVER

Algorithmes dans le cas général (non-métrio

Preprocessing
log(nT)Approximation

Cas métriqu

Conclusion

Algorithme ANS modifié

- On prend une solution au LP
- On utilise le preprocessing
- On tire une variable $a_i \in \mathbb{R}$ par facility distribuée selon $e^{-a_i x}$
- On tire une permutation uniforme des clients
- On met une arête de chaque client à la facility de a_i minimal tel que $x_{ii}^t > 0$
- On met une arête de chaque facility au client d'ordre minimal tel que $x_{ii}^t > 0$
- On assigne chaque client à la facility dans la boucle de longueur 2 qu'on obtient en suivant les arêtes

Présentation du problème

Réduction de SET-COVER

Algorithme dans le cas général

Programme Linéaire

log(nT)-

Approximation log n-Approximation

Cas métrique

Conclusion

Résultats expérimentaux

Résultats d'une série de 10 groupes de 10⁷ instances pour le lemme combinatoire :

Hauteur	5	6	7
Probabilité empirique	0.473	0.453	0.441
Écart parmi 10 tests	0.0008	0.0018	0.0015

Hauteur	8	9	10
Probabilité empirique	0.431	0.423	0.418
Écart parmi 10 tests	0.0013	0.0021	0.0017