
Review of �On Bu�on Machines and Numbers� by P. Flajolet, M.

Pelletier, M. Soria

Nicolas Blanchard

March 26, 2015

Extra credit toward the MPRI 2.15 class

Abstract

In their article, the authors describe a variety of simple and easily combinable procedures allowing to trans-
form a λ Bernoulli generator (ΓB(λ)) into a number of generators performing functions on λ or computing
constants. We seek to prove some of their results and analyse the e�ciency of the procedures on generators for
1
π
and π

4
.

1 Creating a ΓB(1
π)

1.1 The Procedure RAMA

In the paper the authors describe the following procedure :

Procedure RAMA(); {returns 1 with probability 1/p}

S1. let T := X1 +X2, where X1, X2 ∈ Geom(1
4);

S2. with probability 5
9 do T := T + 1;

S3. for j = 1, 2, 3 do

S4. draw a sequence of 2T coin �ips;

if (∆ ≡ #Heads=#Tails) 6= 0 return(0);

S5. return(1).

This is based on an identity of Ramanujan, which states that

1

π
=

∞∑
n=0

(
2n

n

)3
6n+ 1

28n+4

We can �rst prove that Rama indeed computes the right term of the equality.
Let pTn

be the probability that T = n at S3. As the probability of a sequence of 2n �ips being balanced is
2−2n

(
2n
n

)
, the probality of Rama returning 1 is

∞∑
n=0

pTn2−6n
(

2n

n

)3

1

We would then expect pTn to be equal to 2−2n−4(6n+ 1) for the procedure to compute 1
π .

However, the probability of T being equal to n after S1 is

n∑
k=0

Pr(X1 = k)× Pr(X2 = n− k)

n∑
k=0

2−2k
3

4
× 2−2n+2k 3

4
= (n+ 1)× 2−2n

9

16

And we get that

pTn
= (n+ 1)× 2−2n

9

16
× 4

9
+ n× 2−2n+2 9

16
× 5

9

pTn = (n+ 1)× 2−2n
1

4
+ n× 2−2n

5

4

pTn
= (6n+ 1)× 2−2n

1

4

Hence we get a probability 4 times greater than expected. I could not check if the algorithm indeed outputs 1
with probability 1

π although it is quickly decreasing and we have that pT0 = 1
4 and pT1 = 5

16 + 1
64 = 21

64 , and the
probability of being accepted with T ≤ 1 is then 1

4 + 21
512 ≈ 0, 29 with 1

π ≈ 0, 32 so it isn't far. However we can
quickly see that the Ramanujan identity isn't correct, as

∞∑
n=0

(
2n

n

)3
6n+ 1

28n+4
≤
∞∑
n=0

6n+ 1

22n+4
≤ 1

12
+

3

8

∞∑
n=0

n× 4−n

And this gives us a total of at most 5
36 ≈ 0.14 (as

(
2n
n

)
≤ 2n−1 for all n > 0, we can actually get 13

144 ≈ 0.090).
Which proves that the identity used was erroneous (as I couldn't �nd the identity in the litterature i couldn't

do more), however if the identity gives 1
4π ≈ 0.0796 instead then the algorithm correctly outputs 1 with probability

1
π .

It might be possible to use the following identity, also due to Ramanujan

1

π
=

∞∑
n=0

(
2n

n

)3
42n+ 5

212n+4

This means that using the same generation as before we could simply use the same procedure but setting the
S1 and S2 such that pTn

= 42n+5
26n+4 . However �nding the coe�cients necessary is not that easy, and the procedure

obtained would probably we quite long and require many more �ips.

1.2 Analysis of RAMA

Assuming that RAMA indeed computes 1
π correctly, we can try to see its e�ciency, in number of �ips done. This is

quite easily done as after S2 the expected number of �ips is αn = 2n
(

1 +
(
2n
n

)
2−2n +

(
2n
n

)2
2−4n

)
, so the expected

number of �ips is the number of �ips to draw T plus
∑∞
n=0 pTnαn.

We can bound αn by using bounds from Stirling's approximation to get αn ≤ 2n(1 + e
2πn + e2

4π2n2) ≤ 2n+ 1 + 1
n .

Hence we need to estimate
∞∑
n=1

(
12n2 + 8n+ 7 +

1

n

)
2−2n−2

2

This is equal to
∞∑
n=0

3× n(n− 1)4−n +

∞∑
n=0

5× n× 4−n +
7

12
+

∞∑
n=1

1

n
2−2n−2

8

9
+

20

9
+

7

12
+ a

Where a =
∑∞
n=1

1
n2−2n−2 ≤ 1

12 (we use the fact that functions of the type
∑
P (n)αn correspond to sums of

derivatives of functions of the form
∑
αn = 1

1−α).

We can show that this is less than 34
9 ≈ 3.77. The number of �ips needed to �nd X1 and X2 is 8/3 for each

(because each ΓB(1
4) takes 2 �ips), so a total of 16/3 �ips, and the ΓB(5

9) can be done with an average of 16
9 × 4

�ips at most (or 32
27 × 5 if we use a better generator).

At the very end we can see that the total number of �ips is bounded on expectation by 15 (by≈ 15.037).
Moreover, we could also lower bound it by 14.9 by a detailed analysis of the �rst few cases. Finally, we can see that
the variance of all but the last step is 3392

729 ≈ 4.65 which at least gives a lower bound for the total variance.

2 Creating a ΓB(π4)

2.1 Madhava-Gregory-Leibniz generator

The last procedure in the original paper does the following :

MGL:=proc() Repeat {

if bag(U)=0 then return(1) �;

if bag(U)=0 then return(1) �;

if bag(U)=0 then return(0) �;

if bag(U)=0 then return(0) �; } end.

The goal of this procedure is to have a Bernoulli generator of ratio π
4 . It uses two relations to obtain that,

tan−1(1) = π
4 and

´ x
0

1
1+x2 = tan−1(x). The authors combine three tools they describe during their paper to get the

generator, to get something of the form :

BAG(PARITY(SQUARE(X)))

Where SQUARE is the function that to a ΓB(λ) associates a ΓB(λ2) , PARITY is the one that to ΓB(λ) associates

ΓB(1
1+λ) and BAG is the one that to F (λ) associates 1

λ

´ λ
0
F (x)dx.

Actually the MGL procedure seems to be wrong, because we do not have a real squaring in it.
If we just look at PARITY(SQUARE(X)), we get a generator that transforms ΓB(λ) into ΓB(1

1+λ2) with a
procedure that looks like

Repeat {

if ΓB(λ)=0 then

if ΓB(λ)=0 then return(1) �; �;

if ΓB(λ)=0 then

if ΓB(λ)=0 then return(0) �; �; } end.

3

Assuming that BAG transforms a function correctly (this corresponds to Theorem 4.1 which is explained but lacks a

formal proof), this one clearly computes
´ 1
0

1
1+λ2 dλ = π

4 . Either this is equivalent to the one without dependent ifs,

or the �rst one does not compute ΓB(1
1+λ2) and does not compute π

4 . So we need to �nd what the other computes,
which is

∞∑
k=0

λ4k(1− λ) + λ4k+1(1− λ) =

∞∑
k=0

λ4k − λ4k+2 =
1− λ2

1− λ4
=

1

1 + λ2

It indeed turns out that both procedures are equivalent so we can save some complexity and one bit of memory
by using the original one.

2.2 Analysis

If we consider a call to

if ΓB(λ)=0 then

if ΓB(λ)=0 then return(1) �; �;

return(0)

As equivalent to a call to ΓB(λ2) then we can see that the procedure is in fact

if ΓB(λ2)=0 then return(1) �;

if ΓB(λ2)=0 then return(0) �;

But the probability of k + 1 calls to ΓB(λ2) is λ2k(1 − λ2), and by summing over all even k, we get that the

probability of success is (1− λ2)
∑
λ4k = (1−λ2)

1−λ4 = 1
1+λ2 .

Moreover the expected number of calls to ΓB(λ2) after the �rst is equal to
∑
n(λ2)n = λ2

(λ2−1)2 .

To get the number of calls to ΓB(λ) we need to compute the probability of getting 2 calls knowing that we did

not return 1, which is equal to (1−λ)λ
(1−λ)λ+λ , so the expectation is λ+2(1−λ)λ

(1−λ)λ+λ , and the total expectation in number of

calls to ΓB(λ) is
λ2

(λ2 − 1)2
λ+ 2(1− λ)λ

(1− λ)λ+ λ
+ 2

because we always have two calls to ΓB(λ) before returning anything.
If however we use the original generator, the analysis is much simpler, as the expectation on the number of calls

becomes (1 − λ)
∑∞
k=0 λ

k(k + 1) = 1−λ
(1−λ)2 = 1

1−λ . As
λ2

(λ2−1)2
λ+2(1−λ)λ
(1−λ)λ+λ + 2 > 1

1−λ , the expectation of the original

generator is also lower (generally by about 1, unless λ is close to 1).
The authors assert that the expectation of this generator is in�nite, let's prove it. First we can see that the

expected number of �ips done is exactly the expected number of �ips done before encountering a 0 with the BAG.
However the BAG generates a real x between 0 and 1 randomly and returns 0 if the bit number X is 0, where
X ∈ Geo(1

2). If x > 1− 2k we can see that the expected number of �ips to get a 0 is at least 2k. Hence we can sum
the expected number of calls to BAG (as the events considered are disjoint)

E(]BAG) ≥
∞∑
n=0

Pr(1− 2−n < x < 1− 2−n−1)× 2k

And as the right part diverges, so does the expectation.
The interesting part is that generating any other tan−1(x) for x < 1 can be done in �nite expected number of

�ips, as we can multiply the right hand side in the previous inequality by two to make it bigger than the expectation.

4

Moreover we also need to see the number of calls to �nd which bit of x we're looking at. The expectation on the
number of calls to bag is then

E(]BAG) ≤
α∑
n=0

Pr(1− 2−n < x < 1− 2−n−1)× 2k+1

For example we can compute tan−1(1
2) or tan−1(1

3) by setting α = 1 and get

E(]BAG) ≤ 4

And as the number of �ips made in each call is at most 2 in expectation (plus 1 if we encounter a new bit of x),
we get an upper bound of 12 �ips (which can be lowered once again by a re�ned analysis). This gives a total of 24
operations at most (in practice it is about 4 times lower in the authors' simulations).

2.3 Another estimator for π
4

To compare with the previous procedure we can look at the classical operation which draws two numbers at random
in [0; 1] and see if x2 + y2 < 1. To analyse this we could imagine cutting [0; 1]2 into 22k squares and accepting if
and only if the partial bits chosen for the two numbers correspond to a square that is strictly under the curve, and
refusing if it is strictly over the curve. It is evident that this computes π

4 , and as there are at most 2k+1 squares
crossed by the curve out of 22k we can see that the probability of drawing the k − th bit is at most 2k−2. Hence
the expected number of �ips is at most

2×
∞∑
n=0

n22−n

The initial 2 is there to account for the fact that we are �ipping for both numbers. This is not a very accurate
estimate but it already gives an upper bound of 16. If we re�ne we can see that the curve actually crosses at
most 2k + 1 squares, which gives 2 ×

∑∞
n=0 n(21−n + 2−2n) ≤ 9 + 1

3 . Actually, the �nal value is also at least
2×

∑∞
n=0 n2−n ≥ 4. Tests made using a small python script showed that the actual average is ≈ 5.330 on a million

tries, which is slightly better than the both of the generators given.

2.3.1 Python estimator script

import random

i = 0; S = 0;

while i<10000:

k=0; x=[]; y=[];

while (sum(x)**2+sum(y)**2<1 and (sum(x)+(1/2**k))**2+(sum(y)+(1/2**k))**2>=1) :

k = k+1; x.append(random.randrange(0,2)/(2**k)); y.append(random.randrange(0,2)/(2**k));

S=S+2*k; i=i+1;

print (S/10000)

5

