N.Blanchard

Preliminaries

Treewidth Grid Minor Proof Scheme Initial Simplifications

Proof steps

Path-of-set to grid Tree-of-set to Path-of-set Routing in the Tree-of-set Clustering the graph

Improving the bound

Internship Defense

N.Blanchard

Internship at the Institute of Mathematical Sciences in Chennai, India Under the direction of Prof. Saket Saurabh

September 9, 2014

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー わえぐ

N.Blanchard

Treewidth Grid Minor Proof Scheme Initial Simplifications

Path-of-set to grid Tree-of-set to Path-of-set Routing in t he Tree-of-set Clustering the graph

Preliminaries

Treewidth Grid Minor Proof Scheme Initial Simplifications

2 Proof steps

Path-of-set to grid Tree-of-set to Path-of-set Routing in the Tree-of-set Clustering the graph

(3) Improving the bound

Plan of the presentation

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・ 3

N.Blanchard

Preliminaries

Treewidth

Grid Minor Proof Scheme Initial Simplifications

Proof steps

Path-of-set to grid Tree-of-set to Path-of-set Routing in the Tree-of-set Clustering the graph

Improving the bound

- Tree decomposition :
 - A tree ${\mathscr T}$ where each node corresponds to a subset of nodes of the original graph
 - Each vertex and each edge is in at least one node of ${\mathscr T}$
 - The set of nodes containing a vertex v form a connected component of ${\mathscr T}$
- We seek to minimize the size of the biggest set in ${\mathscr T}$:
 - That number minus 1 is defined as the treewidth.
 - It is **NP complete** to determine the treewidth of a graph.
- Many NP hard problems can be polynomially parameterized by treewidth :
 - Coloring, hamiltonicity, weighted independent set
 - Courcelle's Theorem (1990)

Treewidth

N.Blanchard

Grid Minor

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Preliminaries

Treewidth Grid Minor Proof Scheme Initial Simplifications

Proof steps

Path-of-set to grid Tree-of-set to Path-of-set Routing in the Tree-of-set Clustering the graph

Improving the bound

Definition

- Grid : *n* horizontal and vertical lines with nodes at the junction
- Minor : subgraph obtaining by deleting and contracting edges from the original graph

Theorem

Every graph with treewidth k has a grid minor of size $\Omega(k^{1/98+o(1)})$

N.Blanchard

Proof Scheme

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Preliminaries

Treewidth Grid Minor Proof Scheme Initial Simplifications

Proof steps

Path-of-set to grid Tree-of-set to Path-of-set Routing in the Tree-of-set Clustering the graph

Improving the bound

- **1** We start with a graph G with treewidth k
- Get a bounded-degree minor G' with treewidth Ω(k/polylogk)
- 3 Get a clustering with good routers and paths between them
- 4 Make a tree-of-set from the clusters
- 6 Get a path-of-set from the tree-of-set
- 6 Get a grid minor from the path-of-set

N.Blanchard

Initial Simplifications

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Preliminaries

Treewidth Grid Minor Proof Scheme Initial Simplifications

Proof steps

Path-of-set to grid Tree-of-set to Path-of-set Routing in the Tree-of-set Clustering the graph

Improving the bound

With only polylog losses in the treewidth k , we can :

- Get a graph G' with bounded degree
- Get a subset of Ω(k/polylogk) nodes of G' that is node-well-linked, that is :

Definition

A set is node-well-linked if for any pair (T_1, T_2) of equal sized subsets we can join the pair by $|T_1|$ node-disjoint paths.

Path-of-set

Internship Defense

N.Blanchard

Preliminaries

Treewidth Grid Minor Proof Scheme Initial Simplifications

Proof steps

Path-of-set to grid

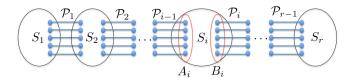
Tree-of-set to Path-of-set Routing in the Tree-of-set Clustering the graph

Improving the bound

Definition

A path-of-set of width r and height h consists of :

- A sequence S = {S₁,...,S_r} or r disjoint subgraphs of g where each G[S_i] is connected ;
- For $1 \le i < r$ a set P_i of h disjoint paths connecting S_i to S_{i+1} without using any of the other vertices present in the S_j , such that all paths in $\bigcup_i P_i$ are mutually disjoint;



N.Blanchard

Preliminaries

Treewidth Grid Minor Proof Scheme Initial Simplifications

Proof steps

Path-of-set to grid

Tree-of-set to Path-of-set Routing in the Tree-of-set Clustering the graph

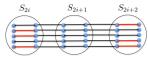
Improving the bound

Theorem

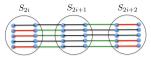
We can find a grid minor of size $\sqrt{h} \times \sqrt{h}$:

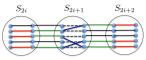
- We can always find a set of $\Omega(\sqrt{h})$ horizontal paths where we can add any vertical edge.
- We use the routers to connect h/2 such sets and add a vertical edge in each.

Path-of-set to Grid Minor



(a) Paths in L'_{2i}, L'_{2i+2} are shown in red





(c) Paths in R_{2i+1} are shown in purple.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

N.Blanchard

Getting the Grid

Preliminaries

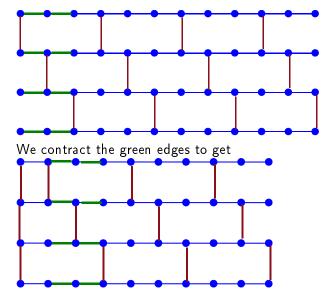
Treewidth Grid Minor Proof Scheme Initial Simplifications

Proof steps

Path-of-set to grid

Tree-of-set to Path-of-set Routing in the Tree-of-set Clustering the graph

Improving the bound



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ(や)

N.Blanchard

Tree-of-set

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Preliminaries

Treewidth Grid Minor Proof Scheme Initial Simplifications

Proof steps

Path-of-set to grid

Tree-of-set to Path-of-set

Routing in the Tree-of-set Clustering the graph

lmproving the bound

Definition

A tree-of-set of width of width h consists of :

- A collection S = {S₁,...,S_r} of r disjoint vertex subsets of G, where each G[S_i] is connected;
- A binary tree T over a set $\{v_1,...,v_r\}$ of vertices ;
- For each edge $e = (v_i, v_j)$ in T a set P_e of h disjoint paths connecting S_i to S_j that doesn't use any vertice from other S_k with all paths in $\bigcup_{e \in E(T)} P_e$ pairwise disjoint.

We are looking for a path-of-set inside the tree-of-set.

N.Blanchard

Preliminaries

Treewidth Grid Minor Proof Scheme Initial Simplifications

Proof steps

Path-of-set to grid

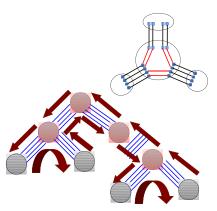
Tree-of-set to Path-of-set

Routing in the Tree-of-set Clustering the graph

lmproving the bound

Tree-of-set to Path-of-set

- Basic idea : do a DFS through the tree.
- Simply going through every node will not work
- Use the leaves as clusters for the path-of-set



イロト イポト イヨト イヨト

N.Blanchard

Preliminaries

Treewidth Grid Minor Proof Scheme Initial Simplifications

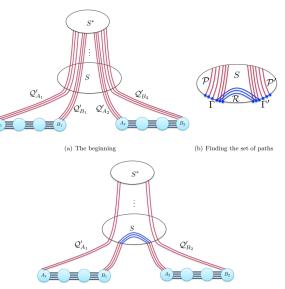
Proof steps

Path-of-set to grid Tree-of-set to Path-of-set

Routing in the Tree-of-set Clustering the graph

Improving the bound

Routing in the Tree-of-set



(c) The end

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ ○ のへで

N.Blanchard

Initial Clustering

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Preliminaries

Treewidth Grid Minor Proof Scheme Initial Simplifications

Proof steps

Path-of-set to grid Tree-of-set to Path-of-set Routing in the Tree-of-set Clustering the

graph

Improving the bound

- Start with node-well-linked set
- Add virtual *terminals*
- Keep \mathscr{T} node-well-linked while removing edges until G' is minimal
- Find a clustering that minimizes the number of edges between clusters

N.Blanchard

Preliminaries

Treewidth Grid Minor Proof Scheme Initial Simplifications

Proof steps

Path-of-set to grid Tree-of-set to Path-of-set Routing in the Tree-of-set

Clustering the graph

Improving the bound

Clustering the graph

- Good routers :
 - No terminals inside
 - High bandwidth
 - Can send lots of flow to the terminals
- Good clustering :
 - All clusters are small
 - Each terminal is its own cluster
 - All clusters have high bandwidth
- We replace big clusters by smaller ones and alternate clusterings with high bandwidth and clusterings with smaller clusters each time until we obtain what we want

N.Blanchard

Preliminaries

Treewidth Grid Minor Proof Scheme Initial Simplifications

Proof steps

Path-of-set to grid Tree-of-set to Path-of-set Routing in the Tree-of-set Clustering the graph

Improving the bound

Improving the bound

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

- The bound was improved multiple times
- Some properties are not yet used which could give better results (e.g. bounded degree)
- Some steps seem polynomially tight : path-of-set to grid for example
- So far existential approach (non algorithmic) only gave polylog gains
- The clusters to tree-of-set seems the most promising area of improvement