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Treewidth

• Tree decomposition :

• A tree T where each node corresponds to a subset of
nodes of the original graph

• Each vertex and each edge is in at least one node of T
• The set of nodes containing a vertex v form a connected

component of T

• We seek to minimize the size of the biggest set in T :

• That number minus 1 is de�ned as the treewidth.
• It is NP−complete to determine the treewidth of a graph.

• Many NP−hard problems can be polynomially

parameterized by treewidth :

• Coloring, hamiltonicity, weighted independent set
• Courcelle's Theorem (1990)
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Grid Minor

De�nition

• Grid : n horizontal and vertical lines with nodes at the

junction

• Minor : subgraph obtaining by deleting and contracting

edges from the original graph

Theorem

Every graph with treewidth k has a grid minor of size

Ω(k1/98+o(1))
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Proof Scheme

1 We start with a graph G with treewidth k

2 Get a bounded-degree minor G ′ with treewidth

Ω(k/polylogk)

3 Get a clustering with good routers and paths between them

4 Make a tree-of-set from the clusters

5 Get a path-of-set from the tree-of-set

6 Get a grid minor from the path-of-set



Internship
Defense

N.Blanchard

Preliminaries

Treewidth
Grid Minor
Proof Scheme
Initial Simpli-
�cations

Proof steps

Path-of-set to
grid
Tree-of-set to
Path-of-set
Routing in
the
Tree-of-set
Clustering the
graph

Improving
the bound

Initial Simpli�cations

With only polylog losses in the treewidth k , we can :

• Get a graph G ′ with bounded degree

• Get a subset of Ω(k/polylogk) nodes of G ′ that is
node-well-linked, that is :

De�nition

A set is node-well-linked if for any pair (T1,T2) of equal sized

subsets we can join the pair by |T1| node-disjoint paths.
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Path-of-set

De�nition

A path-of-set of width r and height h consists of :

• A sequence S = {S1, ...,Sr} or r disjoint subgraphs of g

where each G [Si ] is connected ;

• For 1≤ i < r a set Pi of h disjoint paths connecting Si to

Si+1 without using any of the other vertices present in the

Sj , such that all paths in
⋃

i Pi are mutually disjoint ;
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Path-of-set to Grid Minor

Theorem

We can �nd a grid minor of

size
√
h×
√
h :

• We can always �nd a set

of Ω(
√
h) horizontal paths

where we can add any

vertical edge.

• We use the routers to

connect h/2 such sets and

add a vertical edge in

each.
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Getting the Grid

We contract the green edges to get
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Tree-of-set

De�nition

A tree-of-set of width of width h consists of :

• A collection S = {S1, ...,Sr} of r disjoint vertex subsets of

G , where each G [Si ] is connected ;

• A binary tree T over a set {v1, ...,vr} of vertices ;
• For each edge e = (vi ,vj) in T a set Pe of h disjoint paths

connecting Si to Sj that doesn't use any vertice from other

Sk with all paths in
⋃

e∈E(T )Pe pairwise disjoint.

We are looking for a path-of-set inside the tree-of-set.
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Tree-of-set to Path-of-set

• Basic idea : do a DFS

through the tree.

• Simply going through

every node will not work

• Use the leaves as clusters

for the path-of-set
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Routing in the Tree-of-set
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Initial Clustering

• Start with node-well-linked set

• Add virtual terminals

• Keep T node-well-linked while removing edges until G ′ is
minimal

• Find a clustering that minimizes the number of edges

between clusters
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Clustering the graph

• Good routers :

• No terminals inside
• High bandwidth
• Can send lots of �ow to the terminals

• Good clustering :

• All clusters are small
• Each terminal is its own cluster
• All clusters have high bandwidth

• We replace big clusters by smaller ones and alternate

clusterings with high bandwidth and clusterings with

smaller clusters each time until we obtain what we want
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Improving the bound

• The bound was improved multiple times

• Some properties are not yet used which could give better

results (e.g. bounded degree)

• Some steps seem polynomially tight : path-of-set to grid

for example

• So far existential approach (non algorithmic) only gave

polylog gains

• The clusters to tree-of-set seems the most promising area

of improvement
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