
“Set up son? Scam set, asserts Bob”:
Semi-Automatic Generation of Bilingual
Palindromes
Anonymous Authors
address
website

Abstract
We analyse the problem of composing bilingual palindromes, for which the only high-quality example
known is more than 150 years old. We formalise the problem and introduce multiple partial solutions
for computer-assisted palindrome composition, as well as a comparison between the composition
difficulties in 15 different pairs of languages.

2012 ACM Subject Classification Information systems → Structure and multilingual text search;
Theory of computation → Algorithm design techniques

Keywords and phrases Palindrome, Computational linguistics, Recreational mathematics

Funding Anonymous Authors: funding

1 Introduction

Evoles ut ira breve nefas sit; regna!
This sentence is iconic as a linguistic anomaly, as it is the only known example of its

kind. Taken in reverse, it gives “Anger? ’Tis safe never. Bar it! Use love.” Despite some
liberties taken with the translation and typographical symbols, it is the only existing bilingual
palindrome with the same meaning in both languages. It was discovered — or at least,
first published — by James C.P in an issue of Our Young Folks Magazine [2], a children’s
magazine. Despite being then — and remaining so ever since its publication more than 150
years ago — our only example of such a palindrome being possible, it was presented with no
fanfare by the magazine at all, in small characters on the last page, among other letters to
the editor (under a letter featuring one of the simplest palindromes: “Madam, I’m Adam”),
with the last name of its creator not even indicated.

The Latin phrase roughly translates to “go forth, in order that anger might be a shallow
wrong (over which) you prevail”. While the palindrome’s English version is clearly not a
perfect replication, it does communicate the sense of the Latin appropriately. James C.P
was the first to point out that when read forwards, the palindrome is not exactly classical
Latin, but it is grammatical. The English version is both grammatically cohesive and in line
with the Latin in tense and aspect.

Until recently, a legend permeated the anglophone world, which treated this example
as the only bilingual palindrome in existence, barring some examples made up of one or
two words. This is, unsurprisingly, untrue, although examples are still exceedingly rare.
Even when removing the constraint of having a similar meaning in both languages, only
two sources appear to mention such bilingual palindromes. The first is a 16-page internal
publication linked to the Oulipo and the Collège de ’Pataphysique, written by Luc Étienne
in 1984 [8]. The second is a book published by Gérard Durand on 20/02/2002 with a print
run of a few hundred copies1, which features two pages on the subject [5]. The palindromes

1 The exact number is unknown but inferred from the single copy present as legal deposit.

mailto:website


2 Generating Bilingual Palindromes

in both works are apparently not ones where the meaning is similar in both languages2.
Moreover, they are not perusable online, and the only available online source that mentions
a new bilingual palindrome features one that is not fully grammatical3 [3].

This anomaly — and the associated legend (which the authors initially believed) — is
linked to a diversity of reasons. A probable explanation is that Latin and English form a pair
that is uniquely suited to such constructions. However, the number of fluent Latin locutors —
especially the ones with the expertise and leisure to tackle such problems — has declined
greatly since the 19th century.

We then propose to use computational tools to help modern palindrome composers create
new bilingual palindromes between arbitrary pairs of languages (as long as they share a
segmental script).

Contributions

Our contributions are threefold:
We formalise some of the concepts associated with bilingual palindromes, which give
rise to a few non-trivial algorithmic problems. We also introduce several algorithms
to generate word lists that can be used as primers for manual composition of bilingual
palindromes (which were used to create the palindrome in the title).
We apply those methods and compare the relative difficulties of bilingual palindrome
composition between the six following languages: English, French, German, Polish,
Spanish, and Swahili.
We put a final nail in the coffin of the legend that James C.P.’s palindrome is the only one
of its kind (although it remains to this date the only bilingual palindrome with matching
meanings).

2 Preliminaries

We will consider pairs of languages (L,M), and the reverse languagesMR and LR, consisting
of the words of L andM with reversed letter order.

As the languages can feature slightly different diacritics or character sets, we generally
follow the convention of removing them (as well as any typographical symbol) to simplify
the composition of palindromes, so we will concentrate on a set of characters corresponding
to the 26-character Latin letters present in English.

2.1 Types of bilingual palindromes
We can define three main kinds of bilingual palindromes.

Bilingual strings, which are parsable in both L andMR with at least one decomposition
in each language. For example, wakazaa kazirika in Swahili (a prefix–verb phrase meaning
“then they gave birth”, and the root form of the verb “to be angry”) reversed corresponds
to a kir i zak a az a kaw in Polish (“and pall and student and until and coffee”), and
although both can be parsed, they do not have meaning.

2 We say apparently, as the existence of Étienne’s work was not known to the authors until very recently,
and the rarity of the surviving copies of this internal publication makes them hard to consult.

3 The featured palindrome is taken from the Oulipo, and reads as follows: “Ted, I beg, am I not ever a
venom?” which nearly works in French as “Mon Eva rêve ton image, bidet!”



Anonymous 3

Bilingual sentences, which are not only parsable in both L andMR but follow a semblance
of grammatical rules in both. The rules can be bent somewhat, as is frequently done already
in palindrome composition and related word games. For example, Sir, o, blame Diana
reversed corresponds to An aide mal Boris (where An is a first name) in French [5].

Bilingual meaningful sentences, which are not just grammatical but make sense in both
language even with limited context. A possible example is I am near, I repel as a rat.
which becomes Tara, sale, périra en mai. There is a sub-type of this bilingual pal-
indrome, which we could call a “true bilingual palindrome” where the meanings of both
sentences are related, but the only palindrome corresponding to this is the one featured at
the start of the introduction.

2.2 Objectives
There is one central objective, which is to generate bilingual palindromes of the third kind,
ideally ones with related meanings. However, short of being able to do that directly, we can
look at simplifying the constraints by characterising good sub-languages from which humans
— who excel at pattern seeking — can hopefully work more efficiently to manually compose
palindromes.

One possibility would be to generate many potential bilingual strings and choosing the
best ones. This is because generating bilingual strings is theoretically easy: they correspond
to words from L∗ ∩ (MR)∗. We take a standard representation of L as a prefix tree. We
can then obtain a non-deterministic automaton corresponding to L∗ by adding ε-transitions
from each terminal node to the root. The intersection L∗ ∩ (MR)∗ can then be naturally
computed by checking the product automaton. The issue with that is one of size: many
languages used here have more than 300 000 word forms (including plurals and declensions),
and the corresponding prefix trees can have more than a million nodes. Lazy evaluation can
help, but this can still be prohibitively computationally expensive.

Besides the computational cost, however, is the fact the overwhelming majority of these
strings will be nonsensical, with the probability increasing with the string length — even by
uniformly drawing only three words from an English dictionary, one already at most a 5%
chance of getting a grammatically correct sentence4. A second option is then to find a fixed
point in L∗ ∩ (MR)∗, or in L∗s ∩ (MR

s )∗ for sub-languages Ls ⊆ L and Ms ⊆M . This is the
focus of this article and the objective of the algorithms shown in the next section.

One point that we must be careful with is that we have two opposite constraints. If we
look at extremely reduced Ls and Ms, our work becomes easier in that we get more flexible
words, but we might end up with sets too reduced to compose any complex palindrome. On
the other hand, if L∗s ∩ (MR

s )∗ has tens of thousands of words, we are too weakly constrained
to aid our search efficiently. For example, the following list of 23 words correspond to the
palindromic words present in both French and English. That is, for L = French, andM =
English, the list is L ∩ LR ∩M∩LR:
{a, ana, bob, eme, ere, gag, kayak, non, pep, pop, radar, reifier, rotor,
sagas, selles, sexes , shahs, sis, solos, sus, tallat, tot, tut}
One can arrange the words in the list in any way one wants and have bilingual strings,

but they are too constrained to make long, meaningful sentences. Thus, we are looking for a
sweet spot to help human creation.

4 This estimate was done empirically by drawing many sentences, but corresponds to what one would
expect from the proportion of the different grammatical classes in English.



4 Generating Bilingual Palindromes

2.3 Language and dictionary choices
For this study, we chose a first set of six languages, from different — although sometimes
related — language groups: English, German, French, Spanish, Polish, and Swahili. As the
dictionaries chosen matter a lot for the end results, here are the details of the choices we
made.

English (278 794 words): the Collins Scrabble Words word list (formerly SOWPODS)
was combined with the three one-letter English words i, a, and o, and with words of
length > 15 from Moby Words II (collected via [6]).
French (323 422 words): the French word list from the Hunspell wordchecker was
used, collected from [10]. Characters with diacritics were replaced by the equivalent
non-modified characters (i.e. é → e).
German (675 659 words): a word list designed for wordgames was collected from [7].
Special characters were replaced as follows:

ä, ö, ü ae, oe, ue
ß ss

all other characters equivalent non-modified character

Spanish (635 039 words): a word list was collected from [12]. Special characters were
replaced by the equivalent non-modified characters.
Polish (3 087 991 words): a Polish Scrabble word list (collected from [11]) was
combined with the six one-letter Polish words (a, i, o, u, w, z) and with words of length
> 15 from the Hunspell Polish word list (collected from [10]). We had to make some
tough choices for special characters and followed phonetic rules, replacing as follows:

ł w
w v5

all other characters equivalent non-modified character

Swahili (67 966 words): the Hunspell Tanzanian and Kenyan Swahili word lists were
collected from [10] and combined. Special characters, all consisting of punctuation, were
removed.

3 Algorithms

3.1 Precomputation
To make the algorithms more efficient, the first step is to remove words that are definitely
not in L∗ ∩ (MR)∗. We can then compute the n-grams present in L, that is, subwords of
length n present inside words of L. For a given word to be in L∗ ∩ (MR)∗, for each n-gram
in the word, the n-gram has to be either an n-gram ofMR, or split between multiple words
ofMR. For example, VENT is a 4-gram of the French word ECRIVENT, but does not exist as
a 4-gram in reversed English. However, it is present in the reverse of IT NEVER.

If we denote the n-grams of L by n(L), a first idea is then to compute n(L) \ n((MR)∗).
The issue with this method is that, even if we compute n((MR)∗) using dynamic programming,
the set has a size exponential in n, which generally becomes unwieldy around n = 7.

5 This was done to maintain distinguishability from ł, and did not introduce further confusion as v is not
in the Polish alphabet.



Anonymous 5

We do this for n < 7 and remove words from L that have n-grams not in (MR)∗, getting
us a new language L2 ⊆ L. We can then go the other way and remove fromMR words that
have n-grams that are not present in L∗2. We can proceed iteratively until reaching a fixed
point. This fixed point is generally reached in 2 to 5 iterations, depending on n, with some
examples shown as Figure 1 and Figure 2 in Section 4.

3.2 General algorithms

We can aim to compute three different intersections:
the words present in L∩ (MR), such as snores, which exists in both English and reversed
French.
the words present in

(
L∗ ∩ (MR)

)
∪

(
L ∩ (MR)∗

)
, such as set on which exists as it is

in English, and as notes in French.
the words present in decompositions of strings from L∗ ∩ (MR)∗, which can include
arbitrary long sequences of words before a common decomposition can be found.

The first kind can be computed intuitively by checking the list of words in (M)R against
a prefix tree for L. That said, this list is generally too small to be directly useful, as is shown
on Figure 4.

To compute the second kind, one can operate in the same way, except that the prefix
tree becomes a non-deterministic automaton, with ε-transitions from final nodes to the root.
This allows a word to have multiple decompositions. Although we were expecting this set to
be too reduced to be useful, it is in fact already nearly too large to work with in practice for
certain language pairs, as shown on Figure 5.

As the previous set is already too large, the third set becomes a priori unnecessary. It
is, however, the set whose computation introduces non-trivial algorithmic questions. As we
said above, the intersection language itself can be computed by getting the product of the
automata made from prefix trees for L∗ and ((M)R)∗. The issue is that this automaton
does not allow us to trivially eliminate bad candidate words (that cannot be in a bilingual
palindrome). There are sufficient conditions: for example, if any node reachable by reading
this word and going back to the root (on at least one dimension) can reach an accepting
state, the word will appear in a decomposition. But this is not a necessary condition.

We can then create dependency graphs to simplify the process. Our goal is then to make
sure to link each word to the words in the other language that are necessary for it to be in
the fixed point, and look at cycles within this new graph.

For every word x ∈ L, we start by splitting it into two halves (for every possible split into
potentially empty subwords): A and B. Then we know that A must be the ending of a word
inMR. That is, there must be y ∈MR such that y = CA, with a word z ∈ L = DC, and so
on until both words align. Similarly, B must correspond to a node in the prefix automaton
of MR, either reaching a final node or being splittable into two subwords (reflecting the
process of A).

We then get two options. First we could try to compute those sequences of words until
we reach either a synchronising prefix and suffix or an empty set. The latter would show that
the x cannot be in the fixed point of L∗ ∩ (MR)∗. The former would give us a string with
at least one decomposition in each language, with all the words from those decompositions
being in the fixed point. The issue with this is that the direct way to do it is to compute
— potentially lazily — a product automaton. To see whether A is a compatible prefix, we
need the product of (LR)∗ and (M)∗, except that the latter is rooted in any potential node



6 Generating Bilingual Palindromes

corresponding to AR. To see whether B is a compatible suffix, we need the product of L∗
and (MR)∗, with the former being rooted in any node reachable by B.

The issue with this method is that we once again run into complexity issues, as the
product automaton still has an unwieldy size. We can then weaken our constraint temporarily
to partially resolve this.

To do this, we construct four prefix automata, for L∗, (LR)∗,M∗, and (MR)∗. For every
final node x in L∗, we look at potential splittings into two halves A and B. For each splitting,
we follow AR inM∗, and compute a set of accepting sets (each set is composed of the last
node reached, plus any final node whose ε-transition we went through). We do the same
with B by following B in (MR)∗ and computing the accepting sets. We then take the set of
set products.

By computing the union of all those sets, we get a set of accepting sets, each of which is
sufficient to ensure that x is in L∗ ∩ (MR)∗. If the set of accepting sets is empty, however,
the word cannot be in L∗ ∩ (MR)∗.

Using all those accepting sets, we add dependency relations, which are represented by
directed hyperedges from nodes inM∗ and (MR)∗ to final nodes in L∗. We do the same for
the final nodes in (MR)∗.

We then get a quadripartite directed hypergraph. For every node that has no hyperedge
pointing towards it, we do the following:

delete all the hyperedges the node is a part of as a final node;

if the node has descendants, remove its final indicator and the ε-transition to the root ;

if the node has no descendants, remove it entirely, and remove ascendants recursively
until reaching one that is final or has another descendant;

do the same operations for the corresponding node in the reversed tree of the same
language.

We repeat this process until the set of nodes with no incoming hyperedge becomes empty.
Alas, this method ignores the synchronisation mentioned above, but could already

eliminate many words in certain contexts. Instead of computing the full product automaton,
a hybrid solution would be to follow this and for each incomplete prefix and suffix to compute
the first few levels of this product. For example, one could do a breadth-first search in parallel
in bothM∗ rooted in AR and in (LR)∗, to try to find either a path leading in parallel to
final nodes, or to show that there exists no such path.

4 Data analysis

This section shows the result of the first few methods mentioned previously, to give an idea
of what happens in practice on the languages considered.

We first focus on the percentage of words that gets deleted from each dictionary when we
apply the n-gram elimination method until convergence for a pair of language. This depends
on n, but it is easy to see that larger n remove a superset of words when we restrict ourselves
to words of length at least n.




	Introduction
	Preliminaries
	Types of bilingual palindromes 
	Objectives
	Language and dictionary choices

	Algorithms
	Precomputation
	General algorithms

	Data analysis
	Making palindromes: the importance of grammar 
	Appendix: n-gram curves for all pairs of languages

