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Introduced by Hamburger and Kuehn in 1963
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Minimizing opening and connection costs
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Dynamic case studied in [EMS 2014] (Introduced by Berman
and Odoni in 1982 for stochastic clients)
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Definitions

We have as input:

Set C of n clients

Set F of m facilities

Set T of t time steps

e Opening cost f and switching cost g

Distances d!(/,J) for each (facility, client) pair and each
time step

We seek to connect all clients and minimize costs
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Reduction from SET-COVER

Theorem
[Dinur - Steurer, 2013] SET-COVER has no (1 —¢)logn
approximation unless P = NP.

Which gives us :

Theorem
Dynamic Facility Location Minimizing Sum of Radii has no
(1 —¢) log n approximation unless P = NP.

However this result doesn’t hold in the metric case.
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Formulation en Programme
Linéaire
Three sets of boolean variables with :
e y! equals 1 iff i is open with radius r at time t
* xj; equals 1 iff j is connected to i at time ¢
o z,-j- equals 1 iff j connected to i between t — 1 and ¢t
Minimize
Syb(F+r)  +  g) Z
nLt,r 1J,t
With the constraints :
o Vit Yix;>1
o Vit Xi < Y sar(if) Vi

o Vi j,t>1 z,-j-Zx,-ﬁ-—x,-j-_l
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Preprocessing : choosing when
clients switch facilities

Lemma
(EMS) Preprocessing multiplies the cost by at most 2
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Opening facilities

Algorithm 1 :
¢ Repeat log(Z) + 1 times

e For each facility i, draw a; uniformly in [0, 1]
e For each time step t, open facility / with the biggest
radius R such that

t
a; < Zyir
r>R

It's equivalent to opening i with a radius distributed
along the y}, while maintaining timewise coherence

e Open each facility with the biggest radius among the
log(Z) + 1 partial solutions
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Covering each client
Interval I of client j isn't covered by facility 7 if there is t € /

such that
Z Vir
r>dt(i)

By the LP's second constraint, for t € /

Z y" > mlnx of x,—lj
r>dt(i.j)

The probability of being covered is then at least

1
- (IT0 =) ) 25

1

Repeating log(Z) + 1 times, each client-interval is covered
with probability at least %
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Total Cost

Switching costs at most Z - g, by preprocessing at most
2.-0PT

Cost expectation by facility equal to >" yi(r + 1)

Expecation of cost for partial solutions equal to OPT

Recombining costs less than summing

Theorem
Algorithm 1 is an O(log(Z)) approximation

Corollary
Algorithm 1 is an O(log(nT)) approximation
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log n-Approximation

e If Z < n? use Algorithme 1

e Else cut time in sequences such that n < Z; < 2n and
use "Algorithm 1 on each sequence

Z, Z, z, 2,
_1 | | | | |
t=1 | 1 1 1 1 T
s Vs Y e
Algorithm 1 Algorithm 1 Algorithm 1 Algorithm 1

Theorem
Algorithm 2 is an O(log n) approximation



Metric case

<O «Fr «=)»

«=»

Q>



Dynamic

Sum-Radii .
Clustering ANS Algorithm
N.K.Blanchard,
N.Schabanel
e There is an O(1) approximation for the sum of distances

[An, Norouzi-Fard, Svensson, 2014]

Facility Location

Reduction from . . .
SET-COVER e We propose a natural adaptation of this algorithm

e It can be at best a Q(loglog n) approximation

e Counter-example :
Linear Program
Preprocessing F
Il‘;gé:’c;’)-(%;nation 2
kgp’;-oximation F3
Metric case
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Lemma
Finding such a branch has probability at least % .
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Conclusion

Our results on Sum-Radii Clustering :

Non-Metric (Algorithm/Hardness)

> Distances >~ Radii

Static O(logn) / Q(logn) | 2logn |/ (1 —¢)logn

Dynamic | O(lognX) / Q(logn) | 4logn / (1 —¢)logn

Moreover, modified ANS cannot give better than Q(loglog n)
for the sum of radii.
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Future work

Remaining problems :
e Can we find an upper bound for modified ANS ?

e Can we find a constant approximation algorithm in the
metric case ?

Any questions ?
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SET-COVER ) :
e A client j for each element a; € A
e A facility i for each set b; € B
s e e Set d(i,j) =1if aj € bj and d(i,j) = oo otherwise
e
log(nT)- |
Approximation
log n- ° ° °

Approximation
® o o - O ° @
SS
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by=2
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Clustering Proof of the combinatorial lemma
N.K.Blanchard, , Lo . "
N.Schabanel e The root's key is in the top 1/3 with probability 1/3
e If we only take an ¢ proportion of nodes:
Facility Location e Each node’s key has probability at least % — ¢ to be
EEERCONES smaller than the root'’s.

e We can find a path through a subtree of height 7 with

constant probability
e From this node at height 5 we can find an other path of

Linear Program

A length 7 hence a branch with the property
Approximation
R moximation e We handle dependency and the value of ¢ by only

looking at an arbitrarily small proportion of nodes
Conclusion
Lemma
A good branch exists with probability at least

1 —1In(2) ~ 0.3068
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Modified ANS Algorithm

Take an LP solution

Use the preprocessing

Draw a; € R for each facility with distribution along
e—aix

Draw an uniform permutation of clients

Draw an arrow from client j to facility / with minimal a;
with x} >0

Draw an arrow from each facility to the client of lowest
rank such that xf >0

Assign each client to the facility in the loop of length2
you get by following the arrows



Dynamic

Sum-Radii .
Clustering Experimental results

N.K.Blanchard,
N.Schabanel

Series of 10 groups of 107 instances for the combinatorial

lemma:

Height 5 6 7
Linear Pro:r.?m Observed prOba blllty 0473 0453 0441
Spread over 10 groups | 0.0008 | 0.0018 | 0.0015

oo
Height 8 9 10
Gl Observed probability | 0.431 | 0.423 | 0.418

Spread over 10 groups | 0.0013 | 0.0021 | 0.0017
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