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Warehouse Location

Introduced by Hamburger and Kuehn in 1963
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Warehouse Location

Minimizing opening and connection costs
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Dynamic aspect

Dynamic case studied in [EMS 2014] (Introduced by Berman
and Odoni in 1982 for stochastic clients)
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De�nitions

We have as input:

• Set C of n clients

• Set F of m facilities

• Set T of t time steps

• Opening cost f and switching cost g

• Distances d t(i , j) for each (facility, client) pair and each
time step

We seek to connect all clients and minimize costs
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Problem with the cost function :
Sum of distances
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New cost function :
Sum of radii

Model studied by Charikar and Panigrahy in 2001 (static
case)
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Reduction from SET-COVER
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Reduction from SET-COVER

Theorem
[Dinur - Steurer, 2013] SET-COVER has no (1− ε) log n
approximation unless P = NP.

Which gives us :

Theorem
Dynamic Facility Location Minimizing Sum of Radii has no
(1− ε) log n approximation unless P = NP.

However this result doesn't hold in the metric case.
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Algorithms in the general
(non-metric) case
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Formulation en Programme
Linéaire

Three sets of boolean variables with :

• y t
ir equals 1 i� i is open with radius r at time t

• x t
ij equals 1 i� j is connected to i at time t

• z t
ij equals 1 i� j connected to i between t − 1 and t

Minimize ∑
i ,t,r

y t
ir · (f + r) + g

∑
i ,j ,t

z t
ij

With the constraints :

• ∀j , t
∑

i x
t
ij ≥ 1

• ∀i , j , t x t
ij ≤

∑
r≥d t(i ,j) y

t
ir

• ∀i , j , t ≥ 1 z t
ij ≥ x t

ij − x t−1
ij



Dynamic
Sum-Radii
Clustering

N.K.Blanchard,
N.Schabanel

Presentation of
the problem

Facility Location

Reduction from
SET-COVER

Algorithms in the
general
(non-metric)
case

Linear Program

Preprocessing

log(nT )-
Approximation

log n-
Approximation

Metric case

Conclusion

Preprocessing : choosing when
clients switch facilities

Lemma
(EMS) Preprocessing multiplies the cost by at most 2
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Opening facilities

Algorithm 1 :

• Repeat log(Z ) + 1 times

• For each facility i , draw ai uniformly in [0, 1]
• For each time step t, open facility i with the biggest

radius R such that

ai ≤
∑
r≥R

y t

ir

It's equivalent to opening i with a radius distributed

along the y t

ir
, while maintaining timewise coherence

• Open each facility with the biggest radius among the
log(Z ) + 1 partial solutions
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Covering each client
Interval I of client j isn't covered by facility i if there is t ∈ I
such that

ai ≥
∑

r≥d t(i ,j)

y t
ir

By the LP's second constraint, for t ∈ I∑
r≥d t(i ,j)

y t
ir ≥ min

t∈I
x t
ij
def
= x I

ij

The probability of being covered is then at least

1−

(∏
i

(
1− x I

ij

))
≥
LP

1

2

Repeating log(Z ) + 1 times, each client-interval is covered
with probability at least 1

2
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Total Cost

• Switching costs at most Z · g , by preprocessing at most
2 · OPT

• Cost expectation by facility equal to
∑

y t
ir (r + f )

• Expecation of cost for partial solutions equal to OPT

• Recombining costs less than summing

Theorem
Algorithm 1 is an O(log(Z )) approximation

Corollary

Algorithm 1 is an O(log(nT )) approximation
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log n-Approximation

• If Z ≤ n2 use Algorithme 1

• Else cut time in sequences such that n ≤ Zi < 2n and
use 'Algorithm 1 on each sequence

Theorem
Algorithm 2 is an O(log n) approximation
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Metric case
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ANS Algorithm

• There is an O(1) approximation for the sum of distances
[An, Norouzi-Fard, Svensson, 2014]

• We propose a natural adaptation of this algorithm

• It can be at best a Ω(log log n) approximation

• Counter-example :
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Combinatorial Lemma
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Combinatorial Lemma

Lemma
Finding such a branch has probability at least 1

3
.
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Combinatorial Lemma(2)
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Conclusion

Our results on Sum-Radii Clustering :

Non-Metric (Algorithm/Hardness)∑
Distances

∑
Radii

Static O(log n) / Ω(log n) 2 log n / (1− ε) log n

Dynamic O(log n��@@T ) / Ω(log n) 4 log n / (1− ε) log n

Moreover, modi�ed ANS cannot give better than Ω(log log n)
for the sum of radii.
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Future work

Remaining problems :

• Can we �nd an upper bound for modi�ed ANS ?

• Can we �nd a constant approximation algorithm in the
metric case ?

Any questions ?
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SET-COVER problem

• Set A with n elements

• Collection B of subsets ofA
• How to coverA with a minimal cardinality subset of B ?
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SET-COVER reduction

• A client j for each element aj ∈ A
• A facility i for each set bj ∈ B
• Set d(i , j) = 1 if aj ∈ bi and d(i , j) =∞ otherwise
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Preprocessing

• Set t0 = 1

• Greedily �nd the greatest tk+1 such that∑
i

min
t∈[tk ,tk+1[

x t
ij ≥

1

2

• Set for all [tk , tk+1]

x̂ t
ij

def
= 2 · min

t∈[tk ,tk+1[
x t
ij

• And
ŷ t
ir

def
= 2 · y t

ir
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Proof of the combinatorial lemma

• The root's key is in the top 1/3 with probability 1/3

• If we only take an ε proportion of nodes:

• Each node's key has probability at least 2

3
− ε to be

smaller than the root's.
• We can �nd a path through a subtree of height n

2
with

constant probability
• From this node at height n

2
we can �nd an other path of

length n

2
hence a branch with the property

• We handle dependency and the value of ε by only
looking at an arbitrarily small proportion of nodes

Lemma
A good branch exists with probability at least

1− ln(2) ≈ 0.3068



Dynamic
Sum-Radii
Clustering

N.K.Blanchard,
N.Schabanel

Presentation of
the problem

Facility Location

Reduction from
SET-COVER

Algorithms in the
general
(non-metric)
case

Linear Program

Preprocessing

log(nT )-
Approximation

log n-
Approximation

Metric case

Conclusion

Modi�ed ANS Algorithm

• Take an LP solution

• Use the preprocessing

• Draw ai ∈ R for each facility with distribution along
e−aix

• Draw an uniform permutation of clients

• Draw an arrow from client j to facility i with minimal ai
with x t

ij > 0

• Draw an arrow from each facility to the client of lowest
rank such that x t

ij > 0

• Assign each client to the facility in the loop of length2
you get by following the arrows
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Experimental results

Series of 10 groups of 107 instances for the combinatorial
lemma:

Height 5 6 7

Observed probability 0.473 0.453 0.441

Spread over 10 groups 0.0008 0.0018 0.0015

Height 8 9 10

Observed probability 0.431 0.423 0.418

Spread over 10 groups 0.0013 0.0021 0.0017
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