Inquisitive archduchess wrestles comparatively apologetic pelicans:

Improving security and usability of passphrases with guided word choice

Nikola K. Blanchard¹, Clément Malaingre², Ted Selker³

¹IRIF, Université Paris Diderot

²Teads France

³University of California, Berkeley

ACSAC 34

December 7th, 2018

Why talk about passphrases ?

Current methods to make passphrase

First possibility: let people choose them

Problems:

- Sentences from literature (songs/poems)
- Famous sentences (2.55% of users chose the same sentence in a large experiment)
- · Low entropy sentences with common words

Current methods to make passphrase

First possibility: let people choose them

Problems:

- Sentences from literature (songs/poems)
- Famous sentences (2.55% of users chose the same sentence in a large experiment)
- · Low entropy sentences with common words

Second possibility: random generation

Limits :

- Small dictionary if we want to make sure people know all words
- Harder to memorise

What if we take the best of both world?

We show 20 or 100 words to users, they have to pick – and remember – six. Questions :

- What factors influence their choices ?
- What is the effect on entropy ?
- What are the most frequent mistakes ?
- How is memorisation affected ?

We are principally looking for three effects:

- · Positional effects: choose words in certain places
- Semantic effects: choose familiar words
- Syntactic effects: create sentences/meaning

Simple protocol :

- Show a list of 20/100 random words from a large dictionary
- Ask to choose and write down 6 words (imposed on the control group)
- Show them the sentence and ask them to memorise, with little exercise to help them.
- Distractor task: show them someone else's word list and ask to guess the word choice
- Ask them to write the initial sentence

Interface

homogenization	parabolic	hydride	refits	piezometer	
passe	pralines	radicalised	sanctuaries	ejecting	
erotically	wickets	sperm almandine		devourer	
cenotes	pointedness	noninfectious	enhances	tenterhooks	
turned	microtonal	chimaera	underwrite	upturns	
colorations	hayrides	symbolical	relinquished	above	
scant	invulnerable	reservations	sophistry	paramyxovirus	
camphor	incalculable	novena	biomaterials	turn	
samaritans	supercontinent	touchy	divvied	speeds	
freewheel	translocates	bioinformatics	ants	attractiveness	
relocation	antioxidants	spears	respected	vernaculars	
fuhrer	moribund	incapacitating	apolipoproteins	kalis	
myocarditis	resignedly	redesigns	physiology	pinewood	
sulky	silky	retrogressive	backword	rhapsody	
talpa	memorialize	hazard	keynoter	masons	
disown	fermion	endowment semifinalist		cards	
subsumption	serendipitous	molla housemaids		coach	
potter	quandary	mod	kores	downlight	
treehouse	off	mib bayle		desexed	
chinese	planetesimal	chapbook	kale	pyrophosphate	
Submit					

29.6	32.1	27.2	30.9	40.7	130
28.4	17.3	24.7	17.3	32.1	97
28.4	19.8	25.9	38.3	35.8	120
34.6	34.6	37.0	32.1	33.3	139
98	84	93	96	115	486

Positional bias

5.6	5.6	10.1	2.3	11.3	31
1.1	3.4	1.1	3.4	10.1	17
6.8	5.6	1.1	1.1	1.1	14
6.8	5.6	9.0	9.0	4.5	31
1.1	6.8	3.4	6.8	4.5	20
9.0	11.3	6.8	5.6	5.6	34
6.8	2.3	1.1	9.0	4.5	21
9.0	6.8	10.1	3.4	5.6	31
10.1	7.9	10.1	3.4	5.6	33
6.8	9.0	10.1	3.4	3.4	29
5.6	9.0	10.1	3.4	5.6	30
9.0	4.5	9.0	4.5	4.5	28
7.9	5.6	9.0	2.3	3.4	25
3.4	5.6	6.8	5.6	2.3	21
6.8	0.0	5.6	7.9	4.5	22
6.8	4.5	3.4	2.3	5.6	20
2.3	6.8	2.3	7.9	10.1	26
4.5	6.8	3.4	10.1	9.0	30
6.8	5.6	7.9	10.1	7.9	34
9.0	7.9	6.8	9.0	7.9	36
111	107	113	98	104	533

Syntactic effects :

- Average frequency (< 50%) of meaningful sentences
- 65 different syntactic structures for 99 sentences
- Single frequent structure: six nouns in a row

Syntactic bias

Passphrase examples :

- Monotone customers circling submerging canteen pumpkins
- Furry grills minidesk newsdesk deletes internet
- Here telnet requests unemotional globalizing joinery
- Brunette statisticians asked patriarch endorses dowry
- Marginal thinker depressing kitty carcass sonatina

Semantic bias

Semantic bias

Semantic bias

Three main models to analyse user's choice

Uniform : every word with equal probability

Smallest : Take the six most frequent words from the list shown

Corpus : every word taken with probability proportional to its use in natural language. The word of rank r_k is taken with probability :

$$\frac{\frac{1}{r_k}}{\sum_{i=1}^n \frac{1}{r_i}}$$

Strategy	Entropy (bits)	Strategy	Entropy
Uniform(87,691)	16.42	Smallest(20)	12.55
Corpus(13)	16.25	Uniform(5,000)	12.29
Corpus(17)	16.15	Uniform(2,000)	10.97
Corpus(20)	16.10	Smallest(100)	10.69
Corpus(30)	15.92	Corpus(300,000)	8.94
Corpus(100)	15.32	Corpus(87,691)	8.20
Uniform(10,000)	13.29		

Entropy curves

Section	Correct	Туро	Variant	Order	Miss	Wrong
1:20	19/47	6	8	6	26	5
1:100	26/51	10	5	3	16	4
Control	6/26	11	11	10	31	12
2:20	14/29	1	2	8	0	3
2:100	15/26	4	2	3	1	4

Conclusion

Advantage with 100-word list:

- Secure: 97% of maximal entropy, 30% increase over uniform with limited dictionary
- Memorable: error rate divided by 4
- Lightweight: <1MB tool, can and should be used inside a browser

Advantage with 100-word list:

- Secure: 97% of maximal entropy, 30% increase over uniform with limited dictionary
- Memorable: error rate divided by 4
- Lightweight: <1MB tool, can and should be used inside a browser

Limitations:

- Requires more testing for long-term memory
- Depends on the user's will

Questions:

- What is the optimal number of words to show ?
- Is it interesting to take even bigger dictionaries ?
- Can this method be applied to languages with small vocabularies (Esperanto)
- What is the best way to model user choice ?