## Counting authorised paths in constrained control-flow graphs

Nikola K. Blanchard ${ }^{1}$, Siargey Kachanovich ${ }^{2}$<br>${ }^{1}$ Digitrust, Loria, Université de Lorraine<br>${ }^{2}$ Inria Sophia-Antipolis

# Why this question? 

## Model

We are given:

- A directed graph $G$
- A vector of dimension $k$ initialised at $0: V=(0, \ldots 0)$
- A start node
- For each edge $e$, a vector $V^{e}$ of dimension $k$
- An integer $B$ to bound $V$
- Constraints for each edge $e$


## Avoiding infinite loops



No infinite path $\Longleftrightarrow$ no cycle leaving $v$ unchanged

## Avoiding infinite loops



No infinite path $\Longleftrightarrow$ no cycle leaving $v$ unchanged

## Objectives

We look at two indicators:

- $\Lambda$ : length of longest authorised path
- $\Pi$ : number of distinct authorised paths

Two goals:

- Give general upper and lower bounds for $\Lambda$ and $\Pi$ on graphs of order $n$
- Compute $\Lambda(G)$ and $\Pi(G)$ for any given $G$


## Objectives

We look at two indicators:

- $\wedge$ : length of longest authorised path
- $\Pi$ : number of distinct authorised paths

Two goals:

- Give general upper and lower bounds for $\Lambda$ and $\Pi$ on graphs of order $n$
- Compute $\Lambda(G)$ and $\Pi(G)$ for any given $G$


## Simple example



## Simple example



## Upper bounds

General case:

$$
\Lambda \leq n \times(B+1)^{k}
$$

Corollary:

$$
\Pi \leq n^{n \times(B+1)^{k}}
$$

When $m<k$ :

$$
\Lambda \leq n \times 2^{m} k^{m / 2}\binom{k}{m} B^{m}
$$

## Upper bounds

General case:

$$
\Lambda \leq n \times(B+1)^{k}
$$

Corollary:

$$
\Pi \leq n^{n \times(B+1)^{k}}
$$

When $m<k$ :

$$
\Lambda \leq n \times 2^{m} k^{m / 2}\binom{k}{m} B^{m}
$$

## Upper bounds

General case:

$$
\Lambda \leq n \times(B+1)^{k}
$$

Corollary:

$$
\Pi \leq n^{n \times(B+1)^{k}}
$$

When $m<k$ :

$$
\Lambda \leq n \times 2^{m} k^{m / 2}\binom{k}{m} B^{m}
$$

Thanks to Lê Thành Düng Nguyên:

$$
\Lambda \leq n \times(B+1)^{m}
$$

## Lower bound: multigraph case



## Lower bound: multigraph case



Lower bound: $(n-1)^{2}<k$ case


$$
\Lambda=(2 B+1) B^{(n-1)^{2}-1}, \quad \Pi=(n-1)^{(B-1) B^{(n-1)^{2}-1}}
$$

Lower bound: $(n-1)^{2}<k$ case


$$
\Lambda=(2 B+1) B^{(n-1)^{2}-1}, \quad \Pi=(n-1)^{(B-1) B^{(n-1)^{2}-1}}
$$

## How to find $\Pi(G)$

Central idea:

- Assume we have a Markov chain that allows us to sample paths uniformly at random
- Sample from it repeatedly
- Stop when you get the same path twice
- Output the square of the number of samples multiplied by $4 / \pi^{2}$


## Problems with the Markov chain method

Two main problems:

- How do we find a good Markov chain?
- Is there a divergence between the computed $\Pi(G)$ and the real $\Pi(G)$ ?


## Markov chain example



Divergence: $\Pi^{\prime}=\frac{\Pi}{\log (\Pi)}$

## Markov chain example



Divergence: $\Pi^{\prime}=\frac{\Pi}{\log (\Pi)}$

## Open problems

A few central questions:

- How fast can we get the Markov chain to converge?
- Can we find general bounds on the divergence?
- Is there any general method that could approximate $\Pi(G)$ in $\Pi(G)^{o(1)}$
- Can we compute $\Lambda(G)$ in $o(\Lambda(G))$


## Thank you for your attention

