

Counting authorised paths in constrained control-flow graphs

Nikola K. Blanchard¹, Siargey Kachanovich²

¹Digitrust, Loria, Université de Lorraine ²Inria Sophia-Antipolis

5th Bordeaux Graph Workshop

October 29th, 2019

Why this question?

Model Bounds Counting in practice Conclusion

We are given:

- A directed graph G
- A vector of dimension k initialised at 0: V = (0, ...0)
- A start node
- For each edge e, a vector V^e of dimension k
- An integer B to bound V
- Constraints for each edge e

No infinite path \iff no cycle leaving v unchanged

No infinite path \iff no cycle leaving v unchanged

We look at two indicators:

- Λ : length of longest authorised path
- Π : number of distinct authorised paths

Two goals:

- Give general upper and lower bounds for Λ and Π on graphs of order n
- Compute $\Lambda(G)$ and $\Pi(G)$ for any given G

We look at two indicators:

- Λ : length of longest authorised path
- Π : number of distinct authorised paths

Two goals:

- Give general upper and lower bounds for Λ and Π on graphs of order *n*
- Compute $\Lambda(G)$ and $\Pi(G)$ for any given G

 $\Lambda = 10, \ \Pi = 14$

 $\Lambda = 10, \ \Pi = 14$

General case:

$$\Lambda \leq n imes (B+1)^k$$

Corollary:

When m < k:

 $\Pi \leq n^{n \times (B+1)^k}$

$$\Lambda \le n \times 2^m k^{m/2} \binom{k}{m} B^m$$

General case:

$$\Lambda \leq n imes (B+1)^k$$

Corollary:

 $\Pi \leq n^{n \times (B+1)^k}$

When m < k:

$$\Lambda \leq n \times 2^m k^{m/2} \binom{k}{m} B^m$$

General case:

$$\Lambda \leq n imes (B+1)^k$$

Corollary:

 $\Pi \leq n^{n \times (B+1)^k}$

When m < k:

$$\Lambda \leq n \times 2^m k^{m/2} \binom{k}{m} B^m$$

Thanks to Lê Thành Düng Nguyên:

$$\Lambda \leq n \times (B+1)^m$$

Lower bound: multigraph case

$$\Lambda = n \times (B+1)^k$$
, $\Pi = 1 + n \times (B+1)^k$

Lower bound: multigraph case

$$\Lambda = n \times (B+1)^k$$
, $\Pi = 1 + n \times (B+1)^k$

Lower bound: $(n-1)^2 < k$ case

$$\Lambda = (2B+1)B^{(n-1)^2-1}, \quad \Pi = (n-1)^{(B-1)B^{(n-1)^2-1}}$$

Lower bound: $(n-1)^2 < k$ case

$$\Lambda = (2B+1)B^{(n-1)^2-1}, \quad \Pi = (n-1)^{(B-1)B^{(n-1)^2-1}}$$

Central idea:

- Assume we have a Markov chain that allows us to sample paths uniformly at random
- Sample from it repeatedly
- Stop when you get the same path twice
- Output the square of the number of samples multiplied by $4/\pi^2$

Two main problems:

- How do we find a good Markov chain?
- Is there a divergence between the computed $\Pi(G)$ and the real $\Pi(G)$?

Divergence:
$$\Pi' = \frac{\Pi}{\log(\Pi)}$$

Divergence:
$$\Pi' = \frac{\Pi}{\log(\Pi)}$$

A few central questions:

- How fast can we get the Markov chain to converge?
- Can we find general bounds on the divergence?
- Is there any general method that could approximate $\Pi(G)$ in $\Pi(G)^{o(1)}$
- Can we compute $\Lambda(G)$ in $o(\Lambda(G))$

Thank you for your attention