Usability: low tech, high security

Utilisabilité: haute sécurité en basse technologie

Nikola K. Blanchard, Institut de Recherche en Informatique Fondamentale, Université Paris Diderot

PhD defense before the following jury:

Adrian KOSOWSKI	Université Paris Diderot, INRIA	Examinateur
Michelle MAZUREK	University of Maryland, College Park	Rapporteuse
Marine MINIER	Université de Lorraine	Examinatrice
David NACCACHE	Ecole Normale Supérieure de Paris	Rapporteur
Peter Y.A. RYAN	Université du Luxembourg	Rapporteur
Nicolas SCHABANEL	CNRS, ENS de Lyon	Co-directeur de thèse
Ted SELKER	University of Maryland, Baltimore County	Co-directeur de thèse

PhD Defense at Université Paris Diderot

June 21st, 2019

Introduction: a voting experiment

Voting experiments in Strasbourg and San-Sebastian

Ballots at the Global Forum on Modern Direct Democracy

Random-Sample Voting Ballot

QUESTION: Should voting in national elections be compulsory?

VOTING TIME: 12:00PM CET Thursday 17 November 2016 through 9:30PM CET Friday 18 November 2016

INSTRUCTIONS:

- 1 Choose either half of this sheet randomly (ballot number and password are the same for both halves).
- 2 Use a web browser to visit the webpage: https://vbb.rsvoting.org/rsv/vbb/gfmdd2016-q1/ Your ballot number is your login 0: 001
- Your password @ is: vhbe=buhb=mrda=fwpz
- 3 When prompted, enter the vote code that is printed adjacent your vote.
- 4 You should discard or destroy at least the half of this sheet that you used to vote; it is recommended, however, that you keep the other half of this sheet and write down on it in the space provided your vote code for later use in the audit.

Choice Vote-Code Ø

- Yes 4457-1444-2131
- No 6975-7435-2625

8114-0374-3381	on
4134-9733-6914	50

Choice Vote-Code 8

Tiple out ut ean tate! tot epoc

- 4 You should discard or destroy at least the half of this sheet that you used to vote; it is recommended, however, that you keep the other half of this sheet and write down on it in the space provided your vote the however.
 - When prompted, enter the vote code that is printed adjacent your vote.
 - Kont password @ is: whoe-bubb-arde-twps
 - Your ballot number is your login 0: 001
- /TD-9T07DDH16/00A/ASX/6X0.6UT0ASX.0QA//:sd10U 36edoam au usu of heaving daw a son z
 - Cuoose estudi una origenti supporti (partor nombeli and password are the same tor poor naives).

INSTRUCTIONS:

910

VOTING TIME: 12:00PM CET Thursday 17 November 2016 through 9:30PM CET Friday 18 November

COLESTION: Should voting in national elections be computed in

Random-Sample Voting Ballot

Random-Sample Voting Ballot

The problem of authentication

Something you know: passwords

- Low usability with many passwords
- Often badly implemented server-side
- Password managers create a single point of failure

Something you have: devices

- Vulnerable to denial-of-service
- Third-party authentication introduces trust issues

Something you are: biometrics

• Introduces permanent vulnerabilities, security outcome unsure today

State of password use [Wash et al., 2016, Das et al., 2014, Centrify report, 2014]:

- imes Average user has \sim 100 accounts
- ightarrow "123456" still the most frequent password [Doel, 2018]
- \rightarrow High rate of re-use (75% of users)
- \rightarrow Lots of sharing (40% of users)
- × Creates 50 passwords per year on average
- × No general method, ad-hoc creation due to arbitrary constraints
- \rightarrow Frequent loss of passwords (40% to 60% reinitialised every 3 months)

Passwords today

Image from XKCD, also shown in [Shay et al., 2012]

Attacking the password:

- Constraints are counter-productive [Cranor, 2016, Ur et al., 2015, Florêncio et al., 2014]
- Length trumps complexity [Shay et al., 2014]

Attacking the server [Florêncio et al., 2014]:

- Passwords should be salted and hashed (Facebook, march 2019)
- The hash function has to be specifically chosen (SHA-256 is not enough)
- It should all happen client-side

Methodology

Background and methodology Results Password typo correction Cue-Pin-Select Mental computing models Conclusion 7/4

How to observe real effects on population samples:

- Control the probability of the effect being a fluke
- Have large sample sizes
- Set hypotheses in advance:
 - 1. Refer to bibliography
 - 2. Use simulations
 - 3. Organise a pilot study
- Limit the impact of priming:
 - 1. Use neutral wording
 - 2. When priming unavoidable, make it go against the hypothesised effect

Is an effect real?

- Set a hypothesis
- Estimate the p-value \approx probability of observing the data if the hypothesis is false
- Hypothesis is considered statistically significant if p<0.05

However:

- p<0.05 is not equivalent to 95% probability of being true!
- Testing *n* hypotheses simultaneously increases the probability of a false positive. This needs to be controlled for:
 - 1. Bonferroni: divide the threshold for statistical significance by *n*
 - 2. Holm: sort p-values and reject all the ones for which $p_k > \frac{0.05}{n+1-k}$

Main results

Background and methodology Results Password typo correction Cue-Pin-Select Mental computing models Conclusion 9/4

\rightarrow Analysis of code transcription

Consonant-Vowel-Consonant for Error-Free Code Entry, Blanchard N.K., Gabasova L., Selker T., in HCI International, 2019

	Typo	correction	in	naceworde	
~	Typo	CONECTION		passworus	
	<i></i>				

Comment corriger efficacement les typos dans les mots de passe, Blanchard N.K. in ALGOTEL 2019

→ Mental password manager

Créer de tête de nombreux mots de passe inviolables et inoubliables, Blanchard N.K., Gabasova L., Selker T., Sennesh, E. in ALGOTEL 2018

ightarrow Passphrase generator ightarrow Furry grills minidesk newsdesk deletes internet

Improving security and usability with guided word choice, Blanchard N.K., Malaingre C., Selker T., in ACSAC 2018

Mots de passe : le choix humain plus sécurisé que la génération aléatoire, Blanchard N.K., Malaingre C., Selker T., in ALGOTEL 2018

\rightarrow Models of mental computing

Passwoord

\rightarrow Usability experiments on voting

Vote par sondage uniforme incorruptible, Blanchard N.K, in ALGOTEL 2017

Building Trust for Sample Voting, Blanchard N.K., in TESS 2018 and International Journal of Decision Support System Technology 2018 Improving voting technology is hard: the trust-legitimacy-participation loop and related problems, Blanchard N.K., Selker T., in STAST 2018

 \rightarrow Usable physical implementations of Three-ballot

\rightarrow Primitives and protocols for Boardroom voting

Dynamic clustering

Dynamic Sum-Radii Clustering, Blanchard N.K., Schabanel N., in WALCOM 2017

Institution design

CIVICS: Changing Incentives for Voters in International Cooperation through Sampling, Blanchard N.K., in 2019 Smolny Conference

Metaheuristics for planetary science

Progressive metaheuristics for high-dimensional radiative transfer model inversion, Gabasova L., Blanchard N.K., Schmitt B., Grundy W., New Horizons COMP team, in EPSC 2018

Pluto surface composition from spectral model inversion with metaheuristics, Gabasova L., Blanchard N.K., Olkin, C.B., Spencer, J.R., Young, L.A.,

Smith, K.E. Weaver, H.A. Stern, A., New Horizons COMP team, in EPSC 2019

Analysis of code transcription

Consonant-Vowel-Consonant for Error-Free Code Entry, Blanchard N.K., Gabasova L., Selker T., in HCI International, 2019

Typo correction in passwords

Comment corriger efficacement les typos dans les mots de passe, Blanchard N.K. in ALGOTEL 2019

Mental password manager

Créer de tête de nombreux mots de passe inviolables et inoubliables, Blanchard N.K., Gabasova L., Selker T., Sennesh, E. in ALGOTEL 2018

Passphrase generator

Improving security and usability with guided word choice, Blanchard N.K., Malaingre C., Selker T., in ACSAC 2018

Mots de passe : le choix humain plus sécurisé que la génération aléatoire, Blanchard N.K., Malaingre C., Selker T., in ALGOTEL 2018

Models of mental computing

Analysis of code transcription

Consonant-Vowel-Consonant for Error-Free Code Entry, Blanchard N.K., Gabasova L., Selker T., in HCI International, 2019

Typo correction in passwords

Comment corriger efficacement les typos dans les mots de passe, Blanchard N.K. in ALGOTEL 2019

Mental password manager

Créer de tête de nombreux mots de passe inviolables et inoubliables, Blanchard N.K., Gabasova L., Selker T., Sennesh, E. in ALGOTEL 2018

Passphrase generator

Improving security and usability with guided word choice, Blanchard N.K., Malaingre C., Selker T., in ACSAC 2018

Mots de passe : le choix humain plus sécurisé que la génération aléatoire, Blanchard N.K., Malaingre C., Selker T., in ALGOTEL 2018

Models of mental computing

Password typo correction

Background and methodology Results Password typo correction Cue-Pin-Select Mental computing models Conclusion 14/49

Typos lower usability [Chatterjee et al., 2016,2017, Woodage et al., 2017]:

- Very frustrating
- Frequent (3% error rate)
- More prevalent with longer passwords/passphrases

Correcting typos does not lower security:

- No effect on offline attacks
- Most frequent passwords are far from each other
- Stricter rate limiting than without typo correction

Types of typos (recomputed from [Chatterjee et al., 2016])

Background and methodology Results Password typo correction Cue-Pin-Select Mental computing models Conclusion

16/49

Secure: no new vulnerabilities beyond the accepted typos

Low cost:

- No expensive computation on the server
- Simple to implement/backwards compatible
- Compatible with hashing

Correct as many acceptable typos as possible (32% in [Chatterjee et al., 2016])

Correcting substitutions

Correcting substitutions: Registration

Correcting substitutions: Login

Transposition:

- Remove two letters before hashing
- Encode each letter with two different random permutations

Insertion:

- Combine both previous methods
- Removing two letters from an insertion can be found using the substitution hash

Algorithm	Substitution	Transposition	Insertion	Complete
Computation in # of				
Permutations	n	4n — 4	4n — 4	$\max(4(n-1), 60)$
Hashes	<i>n</i> + 1	n	n	max(<i>n</i> + 1, 17)
Numbers	n imes k	(n-1) imes 4k	$(n-1) \times 4k$	max(4(n-1)k, 60k)
Storage in # of				
Hashes	<i>n</i> + 1	n	2n	max(2 <i>n</i> + 1, 33)
Numbers	n	4n	5n	max(5 <i>n</i> , 80)
Typos handled				
Conservative	24.2 %	28.4 %	34.5 %	50.2 %
Tolerant	24.2 %	28.4 %	42.2 %	57.7 %

A simpler theoretical algorithm

F5 E7 F9 8 F10 F11 E12 9 0 8 U 0 D Tah J K n G Caps Lock Enter В **企** Shift Alt Alt H Ē Ctrl

Create a coordinate system on the keyboard such that legitimate typos are at distance 1.

For small primes p_i , encode password as

$$X(P) = \prod_{1 \le i \le n} p_i^{x_i} \times p_{i+n}^{y_i} \times p_{i+2n}^{z_i}$$

Send $g^{X(P)}$ for a random g in a given large group. If $P' \approx P$: $g^{X(P')} = (g^{X(P)})^{p_i}$ OR $(g^{X(P')})^{p_i} = g^{X(P)}$ Secure:

- Similar online resistance as [Chatterjee et al., 2017]
- Offline attack speed-up < 1.5 on real-world data.

Low cost:

- No extra computation on the server in expectation
- All communications still fit in a single normal-size packet
- Compatible with previous systems

Corrects 57% of all typos, 91% of *acceptable* typos.

Analysis of code transcription

Consonant-Vowel-Consonant for Error-Free Code Entry, Blanchard N.K., Gabasova L., Selker T., in HCI International, 2019

Typo correction in passwords

Comment corriger efficacement les typos dans les mots de passe, Blanchard N.K. in ALGOTEL 2019

Mental password manager

Créer de tête de nombreux mots de passe inviolables et inoubliables, Blanchard N.K., Gabasova L., Selker T., Sennesh, E. in ALGOTEL 2018

Passphrase generator

Improving security and usability with guided word choice, Blanchard N.K., Malaingre C., Selker T., in ACSAC 2018

Mots de passe : le choix humain plus sécurisé que la génération aléatoire, Blanchard N.K., Malaingre C., Selker T., in ALGOTEL 2018

Models of mental computing

Cue-Pin-Select: a mental password manager joint work with Leila Gabasova, Ted Selker and Eli Sennesh

Security:

- High entropy for each password
- High residual entropy against stolen clear-text passwords

Usability:

- Memorable even without frequent use (hence deterministic)
- Easy to understand by laypeople

Adaptability:

• Compatible with frequent constraints

Idea: mentally extract entropy from a large secret

Cue-Pin-Select

High-level view:

Create one high-entropy passphrase and a 4-digit PIN

parallel major domain disastrous divergent waterways 6908

• Create a 4-letter cue for each service

AMZN

ightarrow Deterministically extract 4 trigrams from the passphrase using the PIN and the cue

pa<u>ral</u>le<u>l maj</u>or doma<u>in d</u>isastrous diverge<u>nt w</u>aterways

Security analysis

Today's standard for web services: 36-42 bits (30 years at 1000 tries/s).

Brute-force against Cue-Pin-Select:

- Naive against a password ightarrow 56 bits
- Optimised dictionary against a password \rightarrow 52 bits
- Naive against passphrase ightarrow 210 bits
- Dictionary against passphrase ightarrow 111 bits

To simplify analysis, we assume a very strong adversary who knows:

- 1+ revealed passwords
- Length of the passphrase
- Position of each revealed trigram in the passphrase

We uniformly randomly generate 10 000 passphrases, cues and corresponding passwords and test the entropy left

Passphrase: PARALLELMAJORDOMAINDISASTROUSDIVERGENTWATERWAYS

Adversary knows just the length:

Residual entropy for 1-3 clear-texts (10 000 random passphrase/cue couples)

Background and methodology Results Password typo correction Cue-Pin-Select Mental computing models Conclusion 36/49

Testing it on users

User experiment

4-day experiment:

- Day 1: high cost, some errors
- Day 2: quick speed-up with pen and paper
- Day 3: increase when shift to mental computation
- Day 4: speed-up over the last day, no errors

At the end, large variability, 24-71s

Algorithm can be extended to handle:

- Number and special characters
- Length constraints
- Frequent changes

Cue-Pin-Select:

- 52 bits security per password
- Guaranteed resistance to single clear-text attack, probable resistance to 2-3 clear-texts
- Can create 500+ passwords without high risk of strong partial collision
- Quick learning process to get under 1 min
- According to models, strongly memorable
- Natural extension to handle frequent constraints
- · Other extension to improve security

Analysis of code transcription

Consonant-Vowel-Consonant for Error-Free Code Entry, Blanchard N.K., Gabasova L., Selker T., in HCI International, 2019

Typo correction in passwords

Comment corriger efficacement les typos dans les mots de passe, Blanchard N.K. in ALGOTEL 2019

Mental password manager

Créer de tête de nombreux mots de passe inviolables et inoubliables, Blanchard N.K., Gabasova L., Selker T., Sennesh, E. in ALGOTEL 2018

Passphrase generator

Improving security and usability with guided word choice, Blanchard N.K., Malaingre C., Selker T., in ACSAC 2018

Mots de passe : le choix humain plus sécurisé que la génération aléatoire, Blanchard N.K., Malaingre C., Selker T., in ALGOTEL 2018

Models of mental computing

Empirically testing mental computing models joint work with Ted Selker and Florentin Waligorski

It has immediate effects:

- It allows systematic comparison of mental algorithms
- Replaces some user experiments
- Large savings in time/money

It is a fundamental question:

- Old question in cognitive science [Dehaene, 1992], [Ashcraft, 1992], [Butterworth *et al.*, 2001], [Rodic *et al.*, 2015]
- Brought to CPSci by [Blocki, Blum et al., 2013, 2015, 2017]
- It can guide the development of new methods (e.g. in education)

Summary of the original model:

Operation	Input digits	Proposed cost	
Fauality	1	1	
Equality	2	2	
Addition + modulo	1	# output digits	
Addition + modulo	2	1 + # output digits	
Multiplication + modulo	1	# output digits	
Multiplication + modulo	2	1 + # output digits	
Character-to-digit map	N/A	1	

Three objectives:

• Distribution instead of single cost

• Empirical validation

81 different users, speaking mainly English and French9 sections in the experiment to answer the following:

- Get baseline costs for operations
- Access time to the i-th element
- Do costs commute?
- Are abilities are clustered?

Access time in a letter/number map is not constant:

- Times between 1.6s and 13.9s
- · Getting the next element is 2-3 times faster than the previous
- Only partial re-use of previously computed maps
- Validated with month/number map

Arithmetic operations are not linear (in # of digits). They seem linear in output value (consistent with [Dehaene, 1992] but more work is needed.

Arithmetic operations: times

Background and methodology Results Password typo correction Cue-Pin-Select Mental computing models Conclusion

Conclusion

Background and methodology Results Password typo correction Cue-Pin-Select Mental computing models Conclusion 47/4

How to improve password usability:

- Use better codes
- Generate more memorable secrets
- Correct typos to allow longer passwords
- Find methods to create many passwords

Using similar ideas in voting:

- Investigate what people can do and start from that
- · Propose paper-based solutions to improve trust and understanding
- Work on the pipeline from research to real implementation

Many questions on the mental computing models:

- Are abilities clustered? Do we need tailored mental algorithms?
- How do costs interact inside a mental algorithm?
- Can we develop a realistic cost function?
- Can we prove lower bounds for Cue-Pin-Select or find better mental algorithms?

Second direction, usable voting:

- How usable and secure are the paper voting protocols proposed in practice?
- · Can we make a relevant model to prove security bounds?

Thank you for your attention

Background and methodology Results Password typo correction Cue-Pin-Select Mental computing models Conclusion 49/49

CVC: speed by structure and length

Background and methodology Results Password typo correction Cue-Pin-Select Mental computing models Conclusion

50/49

CVC: error rates by structure and length

Background and methodology Results Password typo correction Cue-Pin-Select Mental computing models Conclusion

51/49

CVC: code preference against alphanumeric

Background and methodology Results Password typo correction Cue-Pin-Select Mental computing models Conclusion

Typo: Key-setting transposition-tolerant algorithm

```
Data: Salts S_0, S_1, \dots, S_5, Password P of length n, Keyboard map M: Keys \rightarrow [0; 255]
   Result: Main hash and list of n - 1 (hash / integer list) pairs
1 begin
         H_0 \leftarrow HASH(Concatenate(S_0, P))
2
         for i from 1 to n - 1 do
3
              P_i \leftarrow P \setminus \{P[i] \mid P[i+1]\}
4
              H_i \leftarrow HASH(Concatenate((S_1, P_i)))
5
              for i from 1 to 4 do
6
                    Random_bits[i] \leftarrow PRNG(Concatenate(S<sub>2</sub>, P<sub>i</sub>))
7
                   \pi_{ii} \leftarrow Brassard(Random_bits[j])
8
              KA_i \leftarrow [\pi_{i,1}(M(P[i]))]
9
              KB_i \leftarrow [\pi_{i,2}(M(P[i+1]))]
10
              KC_i \leftarrow [\pi_{i,3}(M(P[i]))]
11
              KD_i \leftarrow [\pi_{i,4}(M(P[i+1]))]
12
         return (H_0, (H_i, KA_i, KB_i, KC_i, KD_i)_{1 \le i \le n-1})
13
```

Passphrases: semantic effects

Passphrases: distribution of words chosen

Strategy	Entropy (bits)	Strategy	Entropy
Uniform(87,691)	16.42	Smallest(20)	12.55
Corpus(13)	16.25	Uniform(5,000)	12.29
Corpus(17)	16.15	Uniform(2,000)	10.97
Corpus(20)	16.10	Smallest(100)	10.69
Corpus(30)	15.92	Corpus(300,000)	8.94
Corpus(100)	15.32	Corpus(87,691)	8.20
Uniform(10,000)	13.29		

Passphrases: syntactic effects

Background and methodology Results Password typo correction Cue-Pin-Select Mental computing models Conclusion 57,

Section	Correct	Туро	Variant	Order	Miss	Wrong
Control	23% (6/26)	0.42 (11)	0.42 (11)	0.38 (10)	1.19 (31)	0.46 (12)
1:20	40% (19/47)	0.13 (6)	0.17 (8)	0.13 (6)	0.55 (26)	0.11 (5)
1:100	51% (26/51)	0.20 (10)	0.10 (5)	0.06 (3)	0.31 (16)	0.08 (4)
2:20	48% (14/29)	0.03 (1)	0.07 (2)	0.28 (8)	0	0.10 (3)
2:100	58% (15/26)	0.15 (4)	0.08 (2)	0.11 (3)	0.04 (1)	0.15 (4)

Mental arithmetic operations: different regressions

Background and methodology Results Password typo correction Cue-Pin-Select Mental computing models Conclusion

59/49

Ballot designs

Background and methodology Results Password typo correction Cue-Pin-Select Mental computing models Conclusion 60/49

Ballot designs

Background and methodology Results Password typo correction Cue-Pin-Select Mental computing models Conclusion 61/4

Ballot designs

Boardroom ballot designs

Boardroom ballot designs

64/49

Boardroom ballot designs

