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Abstract—Credential leaks still happen with regular frequency,
and show evidence that, despite decades of warnings, password
hashing is still not correctly implemented in practice. The
common practice today, inherited from previous but obsolete
constraints, is to transmit the password in cleartext to the
server, where it is hashed and stored. This allows some usability
improvements, such as typo-tolerant password checkers — which
can correct up to 32% of typos, with no negative impact on
security — formally introduced by Chatterjee et al. in 2016, but
used in some preliminary forms since 2012.

We investigate the advantages and drawbacks of the alter-
native of hashing client-side, and show that it is present today
exclusively on Chinese websites. We then propose an alternative
typo-correction framework based on client-side hashing, which
corrects up to 57% of typos without affecting user experience,
at no computational cost to the server. Finally, we propose some
potential ways to improve the industry standards by enforcing
accountability on password security.

Index Terms—Usable security, Passwords, Hashing functions

I. INTRODUCTION AND PREVIOUS WORK

Despite recent advances in biometric authentication [1] and
account linking [2], passwords are still the main method of
authentication used online and will probably remain so in the
near future. Countless studies have been written on the pitfalls
of password-based authentication [3], [4], initially focusing
on low security, with users creating bad passwords [5] and
repeatedly dodging security measures [6]–[8], but also service
providers ignoring best practices on how to secure password
databases [9]. More recently, research on how to make them
more usable has made advances [10], [11], and some of the
effects of bad password policies are being reversed [12], to
focus on longer passwords. Unlike random passwords with
special characters which suffer from low memorability [13],
long and simple passwords and passphrases [14]–[16] can
benefit from humans’ superior ability to memorise strings that
make sense, improving both security and usability [17], [18].

As authentication becomes an omnipresent task, being re-
fused access is increasingly frustrating, with forgetting one’s
password being perceived about as frustrating as forgetting
one’s keys [19]. Moreover, users sometimes forget their pass-
words, and often mistype them. To prevent some of this
frustration and improve usability, some services like Facebook
have discreetly adopted typo correction for the 2-3 most
frequent typos, such as forgetting the caps lock or capitalising
the first character of a password on a mobile device [20]. In
an innovative paper in 2016 [21], Chatterjee et al. discovered
that a vast majority of authentication failures comes from a

few simple typos, and that it could turn 3% of the users away.
They developed a first typo-tolerant password checker which
was highly secure (and computationally intensive) but could
only correct about 20% of typos. The same team developed
a second system called TypTop [22], which is efficient both
computationally and memory-wise, and corrects up to 32% of
typos. This system works by keeping a cache of allowed pass-
word hashes corresponding to the frequent typos made by the
user, and updates this cache at each successful authentication.
Using a different approach, Blanchard also proposed a simple
theoretical method based on homomorphic encryption that is
too computationally expensive to be usable in practice [23].
Finally, Woodage and some of the original authors created a
new distribution-sensitive scheme that adjusted the error rate
and hashing time, improving the resistance to certain attacks
and providing better time/security trade-offs [24]. Beyond the
obvious usability improvements, those systems can actually
have a positive impact on security as they make long pass-
words — which are more error-prone — much more usable,
lowering the cost of using highly secure passwords.

These developments would be a boon to users if they were
used in practice. However, even after more than two decades
of insistence from the cybersecurity and cryptography com-
munities, password hashing is still far from a solved problem
in practice. Two issues are even more critical today than they
were more than 25 years ago, when vulnerabilities were first
found in MD5. The first is that, although it was first mentioned
as important to security more than 50 years ago, long before
the existence of the Internet [25], password hashing is still
not as commonplace as it should, with weekly reports of
stolen credentials revealing the extent of the damage [26].
Many recent database leaks with passwords in cleartext re-
veal that even some of the largest service providers still do
not follow what was already best practices when they were
created, with Facebook, Twitter and Github all being caught
using antiquated security models in 2018-2019 [27]–[30]. The
second issue is that hashing techniques have changed1, and
distributed computation on specialised hardware has made
many hashing algorithms obsolete for password purposes. Well
applied modern hashing techniques are still exceedingly rare,
with the only major leaks that showed this level of security
coming from online password managers such as LastPass [33],

1To be fair, any change in the agreed standard on a technically complex
piece of technology — cryptography especially — creates its share of
difficulties in the implementation [31], [32].



[34]. In an extensive analysis [35], Jaeger et al. looked at
31 credential leaks going from 2008 to 2016, totalling close
to 1 billion email/password pairs worldwide. Of the leaks
considered, more than half consisted of entirely unencrypted
stored credential pairs (including gmail.com in 2014 and
twitter.com in 2016, although they could not make sure the
data was authentic), and only one, ashleymadison.com, used
a strong level of encryption — bcrypt — while still making
some mistakes2.

There are many explanations for such problems, most of
them with a social component. First, developers who imple-
ment the security procedures do not always have the relevant
training [37], [38]. This is linked to a culture of going faster,
at the expense of good security practices [39]. This, in turn,
comes from the fact that service providers generally suffer
from negative outcomes only when security breaches become
public, which doesn’t always happen immediately after the
fact [40]. Even in such cases, the incentives are not always
strong enough to effect real change — Yahoo! suffered from
three leaks of increasing magnitude between October 2016
and October 2017, which could have been prevented had
security been reinforced after the first [26]. Although there are
ways to address this issue, the most common one — blaming
the developers — has not worked so far [37]. As such, we
investigate the possibility of client-side password hashing to be
an alternative to the standard practice of server-side hashing.
Its main advantage is that client-side hashing, as opposed to
server-side, is easily detectable and analysable. This creates
a form of accountability, means that it becomes possible to
impose a direct cost on companies with poor security practices.
Thus, we can give a strong incentive to companies to reform
their practices before they suffer from major public security
breaches. But such a change should not come at a usability
cost to users, hence the frameworks introduced in the second
part of this article that seek to replicate the work of Chatterjee
et al’s [22] on the client’s side.

Main results: We give an overview of client-based hash-
ing today, with an analysis of its advantages and drawbacks.
We also discuss how to detect it, and give empirical data
on its prevalence among the Alexa Top 50, showing that the
only web services apparently using client-side hashing — with
non-standard hashing methods — are based in the People’s
Republic of China.

To keep the usability advantages of server-side hashing,
we then introduce a simple typo-tolerant framework that is
usable, secure and efficient, based on a completely different
design than the one in Chatterjee et al.’s work. This system
improves usability by correcting up to 57.8% of total typos,
or up to 91.2% of acceptable typos. It is efficient, requiring
limited client-side and next to no server-side computation, as
well as low communication bandwidth and limited storage.
It is simple, being easily implementable and compatible with

2The main mistake made was storing MD5 hashes of case-insensitive
versions of the passwords, from which it was possible to compute a preimage,
leaving the option of computing the full password by hashing the 1000 or so
remaining possibilities through bcrypt [36].

other systems, as well as being retro-compatible with other
frameworks. Finally, it is secure, limiting the risks of both
credential spoofing and credential theft.

Structure of the paper: After an analysis of client-side
hashing and how to detect it, along with empirical data on its
current use, the paper features a short recomputation of the
typos shown in Chatterjee et al.’s initial study [21], to allow
an easier comparison between the two frameworks. We then
describe the intuition behind the framework we propose, fol-
lowed by the algorithms themselves and the security analyses.
We discuss how those results could be used to improve the
security ecosystem, and conclude with a quick summary of
the central points of our hashing framework.

II. CLIENT-SIDE HASHING: ADVANTAGES, DRAWBACKS,
AND HOW TO DETECT IT

A. Cost-benefit analysis

The general password architecture that was developed in
the 1970s has not evolved much in the decades since. The
best practice still consists in hashing the password with a
salt, storing this hash on the server, and comparing the hashes
to make a decision when the user tries to login again. The
question is then whether to compute the hash locally or to
transmit it before having it hashed on the server. Hashing it
on the client has five main advantages:
• No credential reuse attack, as the password never leaves

the client machine. If an appropriate hashing algorithm
and salt are used, an adversary with access to the database
cannot reuse the credentials to mount an attack on a
different service provider.

• Lower server costs, especially for hashing frameworks
that use expensive key derivation functions, as the com-
putationally expensive part happens on the client’s side.

• Stronger hashing, as there is no need to compromise
between server load and security, as determined by the
slowdown factor of the hashing function. More computing
power can then be dedicated to hashing, at the client’s
expense (as they have a low probability of noticing a few
extra ms).

• Extra protection against phishing, as the use of the
website address as salt can be detected (or corrupt pass-
word hashes generated instead). This can help against
homograph attacks — where a unicode character that is
visually similar is used to get realistic-looking impostor
domain names [41] — as one among a set of other
mitigation methods [42], [43].

• Accountability, which is probably the central advantage.
If implemented at scale, this method can create a social
cost for companies that do not implement client-side
hashing, as they become known for having lax security
practices. In consequence, companies have a direct inter-
est in improving the security. This is opposed to what
happens currently where many companies ask developers
to spend time on security issues only in a reactive manner,
after the leak has already happened. Client-side hashing



allows the system to have detectable issues that can
be found and corrected before they cause catastrophic
failures.

Despite the advantages, client-based hashing was not al-
ways a possibility, due to a central drawback: incompatibil-
ity with legacy protocols. Some older protocols, especially
homebrews, require a cleartext password to function [44].
Although those protocols have mostly disappeared and this is
not quite relevant anymore, there is still a generally unspoken
assumption that all hashing should be done server-side. The
server hashing cost was even a major point of contention in a
recent password hashing algorithm competition [45], without
the authors mentioning the possibility and impact of client-side
hashing. Besides the incompatibility with legacy protocols,
there are three other main drawbacks to client-side hashing,
depending on how it is implemented:

• Authentication attacks after leaks could be a risk if an
attacker manages to obtain a copy of the database. They
could then copy the hash and send a valid authentication
message to the website. Two factors mitigate this. The
first is that it is quite trivial to prevent it by having
double hashing, whereby the service provider also runs
a minimal amount of hashing server-side thus preventing
this attack. In such a case, the server-side hashing does
not require strong security parameters, and a simple SHA-
256 is enough3, as it is not the security bottleneck — as
long as the client-side hashing is solid enough to prevent
brute-force. The second factor is simply that an adversary
able to steal the password database is also most probably
able to steal and affect most other systems. As such,
the impact would mostly concern buyers of said stolen
database rather than the original attacker.

• Computing power limits, as servers generally have more
computing power than at least some of the client devices.
As long as most clients authenticate through computers or
modern mobile devices, this should not be problematic,
as the computing power and, even more importantly,
the memory available tend to be more than what many
servers could generally afford for a single user, even in an
unoptimised Javascript implementation. That said, with
the advent of the Internet of Things, some devices with
very low power could be involved and require password
authentication, which could complicate the matter.

• Script blocking could affect some users’ ability to login.
This is especially true among users who are sensitive to
security issues and block all scripts by default. The jump
in memory and CPU use could also trigger warnings as
they would occur in a way similar to cryptojacking4 [46].

3MD5 would not work as it would be easy for an adversary with the leaked
database to create an attack: instead of finding the original password, they
would only need to find an MD5 collision for it.

4Cryptojacking corresponds to the hidden execution of code inside a
browser to mine cryptocurrencies while the user is visiting a website.

B. Detecting client-side hashing

One of the main interests of client-side hashing is that it is
observable by the user. Detecting it, however, often requires
work. Some service providers still rely on security through
obscurity, and make their scripts obfuscated to make attacks
harder. Except in rare cases, passwords are by now generally
encrypted (with a symmetric encryption algorithm) before
leaving the client’s machine. As such, checking whether the
password is still visible in outgoing packets would only catch
the very worst cases, where the password is neither hashed
nor encrypted. Thankfully, there are at least two different
methods to check whether sufficiently secure hashing is being
performed.

a) Syntactic and semantic analyses: The first method
is the most precise of the two, and relies on — potentially
automated — code analysis. One of the simplest way is to
check the libraries called by the current webpage and infer
from them (for example, the presence of no hashing library
besides the inclusion of an MD5 function would be a red
flag). An improvement would be to automatically detect the
password field and follow the path of the relevant memory
object (or to check whether any object sent in an outgoing
packet is identical to the password before the packet is
encrypted). As it depends on the skill of the person analysing
the code, this is the most versatile method and can even work
with custom-made hashing methods, but cannot be entirely
automated. It also struggles against hashing that relies on
compiled code.

b) Computing load analysis: An alternative and more
efficient method could be used in the near future to de-
tect whether the website implements client-side hashing, and
whether it is secure enough. One issue is that it is not
immediately relevant, as the proportion of websites that would
currently be considered secure would be infinitesimal. The
idea is quite simple: any correct implementation of a secure
password hashing algorithm requires a surge in memory and
processor usage. Detecting it would be doable, although a
surge could be linked to a different process. As such, it can
mostly be used to quickly detect websites where the hashing
is visibly insufficient. One could combine both methods to
indicate a failure to correctly hash in most dangerous cases
— but proving that the hashing is correctly done is a harder
problem.

C. Manually checking the Alexa top 50

We decided to use manual semantic analysis to check
which of the top 50 global websites — according to Amazon
Alexa [47] — implemented client-side hashing. Table I shows
the results of this small experiment.

a) Analysis of the websites with client-side hashing:
Out of the top 50 websites, we only found 8 with client-
side hashing. This is slightly misleading, however, as some
of the concerned websites, including 360.cn and qq.com, use
the same authentication system, made by baidu.com. Other
websites — like csdn.net and taobao.com — do not redirect
to baidu.com but reuse very similar authentication templates.



Website Client-side Website Client-side
google.com NO youtube.com NO
facebook.com NO baidu.com YES
wikipedia.org NO qq.com YES
yahoo.com NO amazon.com NO
taobao.com YES twitter.com NO
tmall.com NO reddit.com NO
instagram.com NO live.com NO
vk.com NO sohu.com NO
jd.com NO yandex.ru NO
sina.com.cn YES weibo.com YES
blogspot.com NO netflix.com NO
linkedin.com NO bilibili.com NO
twitch.tv NO pornhub.com NO
login.tmall.com NO 360.cn YES
csdn.net YES yahoo.co.jp NO
mail.ru NO bing.com NO
microsoft.com NO whatsapp.com NO
naver.com NO aliexpress.com NO
livejasmin.com NO microsoftonline.com NO
alipay.com YES ebay.com NO
xvideos.com NO tribunnews.com NO
amazon.co.jp NO google.co.in NO
github.com NO okezone.com NO
imdb.com NO google.com.hk NO
pages.tmall.com NO stackoverflow.com NO

TABLE I
RESULT OF A MANUAL ANALYSIS ON WHICH WEBSITES IMPLEMENT CLIENT-SIDE HASHING. A YES WAS GIVEN TO EACH WEBSITE WHERE THE

PASSWORD WAS NOT SIMPLY SYMMETRICALLY ENCRYPTED USING TLS. ALL WEBSITES COME FROM THE ALEXA TOP 50 GLOBAL WEBSITES ON
07-07-2019, WITH THE LEFT COLUMN CORRESPONDING TO RANKS 1-25, AND THE RIGHT ONE TO RANKS 26-50. THE ANALYSIS WAS PERFORMED OVER

THE FIRST HALF OF JULY 2019.

Crucially, the 8 websites with client-side hashing correspond
exactly to the 8 websites from the top 50 that are based in
the People’s Republic of China. There are different potential
explanations, which we will now investigate, by asking two
main questions. First, why does every Chinese website imple-
ment client-side hashing, and second, why are they the only
ones to do so? Alas, we do not have access to the decision-
making process that led to this state of affairs. However, we
can make informed guesses by looking at regulations and
incentive structures.

b) Chinese client-side hashing: The PRC imposes strong
constraints on the type of cryptography that can be used on
its territory and by its companies [48], so it is normal to see
a difference in the frameworks used. One trivial consequence
is that the hashes on the relevant websites cannot be easily
identifiable as the output of a common hashing algorithm
due to the character set and length parameters. A second
visible difference is that websites generally discourage users
from using passwords, privileging alternative methods such as
unlocking through one’s phone, as Google recently deployed
on its own service. This means that they also generally
implement some forms of 2-factor authentication based on
cellphone usage. There are two advantages to this design,
in a context where some ISO protocols could potentially
be compromised [49], [50]. The first is that it makes it
easier to prevent foreign actors from being able to decrypt
password data exchanged with — potentially compromised
— ISO protocols while it is in transit. The second is that,
as 2-factor authentication is used, tracking users — through

triangulation, among other methods — becomes possible with
the cooperation of telephone companies5. Strong state security
incentives and a tight cooperation between the state and large
technology companies [53] make it feasible to implement
this kind of technological decision on a national scale. The
improved security linked to client-based hashing could then
be a side-effect of state-wide protection mechanisms against
foreign actors.

c) Server-side hashing in other countries: There are
many potential arguments as to why server-side hashing is so
frequent, but the main explanation is probably the simplest:
inertia and simplicity. In a world where large companies with
hundreds of millions of users still store their passwords in
cleartext, the question is not so much ”why is the hashing
not done on the client?” but rather ”why is the hashing not
done at all, or with obsolete tools?”, as shown in [35]. This
is compounded by the fact that, unlike the general issue of
hashing on which there was a quasi-unanimity and a common
push from the security community for more than two decades,
the issue of server-side versus client-side hashing is less
known, and even academic endeavours didn’t question some of
the common assumptions until recently [44], [45]. Two other
issues amplify this inertia and are worth looking into.

The first is that there has been a long tradition of pitting
security and functionality against each other. Until recently,

5This would be a natural extension of the 2002 law that forced cybercafe
owners to keep a list linking login information and state ID for all their
clients [51] — in a country where cybercafe was the main internet access
point for more than a quarter of users in 2006 [52].



common practice said that any improvement on the first came
at the expense of the other. This view has recently been
challenged, thankfully, as certain designs can in practice im-
prove both [54] — similarly to how the increased complexity
of password constraints in the 2000s actually worsened both
security and functionality [55].

The second issue, related to the first, is the incentive struc-
ture that surrounds password security. Most online companies
operate in an ecosystem where security is not a cost that is
paid continuously but instead where they pay nothing until
a major leak is made public. As such, there is little in the
way of incentives to push those companies to keep up to date
against threats they are misinformed about. This translates to
developer culture, where security can become an afterthought
when the goal is to implement the different functionalities
as fast as possible. Even developers aware of the security
risks might end up with managerial directives that go against
their warnings, as the potential damage can be underestimated
until the damage is done [56]. This reactive way of handling
security is alas poorly adapted to passwords as they have a
domino effect on other services [57].

Solving this bad incentive structure — at least on this front
— is one of the main advantages of making client-side hashing
the norm.

III. A CLIENT-SIDE TYPO-TOLERANT FRAMEWORK

A. A typology of errors

Before introducing our framework, we want to provide
an analysis of the most frequent user errors, as studied
in [21], [22]. As motivation for the first error-tolerant password
checker, Chatterjee et al. ran an experiment using Mechanical
Turk to look at the types of errors committed by users typing
other people’s password. They published a summary analysis
with their algorithm in [21] and made the data publicly
accessible.

In the original study, the authors chose to only look at
strings whose Damerau-Levenshtein distance [58] was less
than 2, as well as errors where the caps lock was inverted
for the whole string. We decided to run a more detailed
analysis of the first data-set, shown in Table II. Some of the
errors considered in [21] would probably not happen in the
real world, mostly inserting spaces and transcription errors
— such as confusing ”1” and ”l”. This creates differences
between analyses, but both agree that handling caps lock
as well as single substitution, transposition, insertion and
shifting errors would handle 65% to 73.9% of errors. Two
main questions arise when looking at such data: which errors
are legitimate typos, and which legitimate typos should be
corrected. Considering the length of passwords in the database,
we chose to look at Levenshtein distances up to 4, discounting
transcription errors. From this, the set of acceptable typos
will correspond to typos at distance at most 2, except ones
involving deletions or substitutions by a distant character. We
chose to exclude both, as deletions would greatly increase
the risk of targeted attacks as shown in the next section,
and to only allow proximity substitutions. Such a substitution

Typo category Wrong password %
Single substitution 31.3

QWERTY neighbour 14.7
Numpad neighbour 0.6
Single shift 9.0

Single deletion 20.5
Caps lock 15.5
Single insertion 13.9

Space 2.1
Duplicated letter 4.0

Single transposition 4.2
Other 15.7

TABLE II
TYPES OF TYPOS RECOMPUTED ON THE ORIGINAL DATA-SET FROM [21],

OVER ALL PASSWORDS AT DISTANCE AT MOST 6 FROM THE ORIGINAL,
PLUS COMPLETE CAPITALISATION ERRORS.

happens when the key pressed is one of the six keys closest
to the original one (two above, two below, and one on each
side).

Chatterjee et al.’s model generally does not seek to correct
transcription errors, so our set of errors is almost a superset
of theirs. Thus, although we use slightly different metrics
and proportions, comparing proportions directly between their
model and ours can only reduce the difference in corrected
proportions (i.e., we correct 57% in our model, and they
correct 32% in their model, which would be less than 32% in
our model). The model we present then corrects the following:
substitutions of adjacent characters (15.3%), single capitalisa-
tion (9.0%), full capitalisation (15.5%), single transposition
(4.2%), insertion of spaces or duplicate characters (2.1%
and 4.0%). We finally also choose to correct the remaining
arbitrary insertions (7.7%) as it does not have a large impact
on security, for a total of 57.8%. This is when compared
to the total number of typos that does not exclude deletions
and arbitrary substitutions. The unacceptable typos represent
36.6% of all typos, leaving only 5.6% of typos left that are
neither corrected nor immediately dangerous to correct.

B. Definitions and general intuition

This framework is a set of three algorithms: one to create a
password (key-setting), one for the user to compute and send
their password to the server when asked their credentials (key-
sending), and the last one for the server to check whether the
credentials received should be accepted (key-checking). The
framework works with a variety of typo tolerance policies,
such as only accepting capitalisation errors, or only certain
forms of keyboard proximity errors (accepting an ”r” instead
of ”e”, but not a ”d”).

There are of course many different potential frameworks.
For example, the simplest efficient typo-checking framework
would consist in storing the value for both the hash of the
normal password and the hash of the string corresponding to
the same password in caps lock. More than 15% of typos
could be handled this way, at the cost of storing and comparing
a single additional hash. The simplest complete system is to
store — or send — hashes corresponding to all possible typos.
The problem is that, depending on the typos corrected, this



system requires the storage or communication of hundreds of
hashes, making the system less efficient and more vulnerable
to random collisions.

The framework shown is in fact the third iteration of a
process where each step corresponds to a framework that
handles more typos than the previous one. The first and
simplest step only addresses the most frequent typo: single ad-
jacent substitution errors, where one character in the password
is replaced by another neighbouring character. For example,
an ”e” could be replaced by an ”r”, a proximity error that
should be accepted, whereas replacing ”e” by ”m” should lead
the algorithm to reject. We also rely on the agreement over
a canonical keyboard map, assigning every key-press to an
integer. For example, one could use the JavaScript key codes,
whose main list goes from 8 till 255, but less than 100 of those
numbers correspond to usual keys. Instead of the layout, the
keyboard map depends on a map from key-presses (such as
”a” or ”SHIFT+a”). The initial framework of the series broadly
works as follows:

1) The password of length n is split into n partial pass-
words, each missing one character.

2) The partial passwords are concatenated with a salt6

before being hashed.
3) Pseudorandom permutations within the set of character

codes are computed (generally [0, 255]), based on the
hashes, using Brassard’s algorithm [59].

4) Each excluded character and all the adjoining ones
on the keyboard are encoded using the corresponding
permutation.

5) The user sends the login message, a list of n (hash,
number list) pairs.

6) If one hash is correct, and the stored number is in the
corresponding list, the server authenticates the user.

The framework shown here extends this idea and adds in-
sertion and transposition tolerance, by removing two adjacent
characters and computing the hashes, and sending the images
of the missing characters through different permutations. The
three algorithms of the framework are shown in the following
pages: key-setting in Algorithm 1, key-checking in Algo-
rithm 2 and key-sending in Algorithm 3. Then comes some
reflections on the design choices, and security properties in
the following section.

C. Design choices and optimisations

The question of which proximity errors should be allowed
is quite simple, but when it comes to inserted letters it
becomes non-trivial. For example, duplicated letters or added
spaces seem like good candidates, whereas letters far from the
nearby keys might not be legitimate typos. Additionally, some
insertions go with other typos, especially with shift errors.
This happens when, instead of hitting the shift key followed
by the targeted letter, the user hits a key next to the shift key,
committing a double typo.

6The salt here can be any arbitrary string, using the login plus a number
works, the main goal being to avoid precomputed tables.

Data: Username NAME, Password P of length n
Keyboard map M : Keys → [0, 255]
Result: Main hash and lists of (hash / integer) and (hash / integer list) pairs
begin

S[0]←−SHA3-256(NAME)
for i from 1 to 5 do

S[i]←−SHA3-256(S[i− 1])
H0 ←−Argon2(Concatenate(S[0], P ))
if n < 10 then

return H0 /* Preventing general typo correction on
very short passwords. */

else
while Length (P ) ≥ 16 do

P .append(S[0][0]) /* Making the passwords have
uniform minimum length of 16. */

for i from 1 to n do
PAi ←− P \ P [i]
HAi ←−Argon2(Concatenate(S[1], PAi))
Random bits ←− SHA3-256(Concatenate(S[2], PAi)
πi ←− Brassard(Random bits)
Ki ←− πi(M(P [i]))

for i from 1 to n− 1 do
PBi ←− P \ {P [i]

⋃
P [i+ 1]}

HBi ←−Argon2(Concatenate(S[1], PBi))
for j from 1 to 4 do

Random bits[j] ←−
SHA3-256(Concatenate(S[j + 1], Pi))
πi,j ←−Brassard(Random bits[j])

KAi ←− [πi,1(M(P [i]))]
KBi ←− [πi,2(M(P [i+ 1]))]
KCi ←− [πi,3(M(P [i]))]
KDi ←− [πi,4(M(P [i+ 1]))]

return
(H0, (HAi, Ki)i≤n, (HBi, KAi, KBi, KCi, KDi)i≤n−1)

Algorithm 1: Key-setting algorithm

Data: Length n, Original hash H , Original list (HAi, Ki)
Original list (HBi, KAi, KBi, KCi, KDi)
Received hashes H0 and H′0 and list (H′i, LAi, LBi, LCi, LDi)
Result: ACCEPT if and only if the password has at most one acceptable typo.
begin

if H = H0 OR H = H′0 then
return ACCEPT

else
if n < 10 then

WAIT(RANDOM(0.1-1))/* in ms, against timing
attacks */

return REJECT
else

for i from 1 to n− 1 do
if HBi = H′i then

for j from 1 to |LAi| do
if (LAi[j] = KAi AND LBi[1] = KBi)

OR
(LBi[j] = KBi AND LAi[1] = KAi) then

return ACCEPT
if LCi[1] = KCi AND LDi[1] = KDi then

return ACCEPT
else

if HAi = H′i AND LBi[2] = KBi then
return ACCEPT

if HAn = H′n AND LBn[2] = KBn then
return ACCEPT

WAIT(RANDOM(0.1-1))
return REJECT
Algorithm 2: Key-checking algorithm

Instead of a permutation, a function from [0, 255] to a
greater set could also be used, as it could increase the security
by reducing the probability that an adversary could guess the
correct number. This is a trade-off between simplicity, effi-
ciency, and security. The main advantage is that it would lower
the success probability of attacks with hashes of different
dictionary words. This is not relevant as the advantage of this
type of attacks over dictionary attacks is limited in scope by
the low probability of getting a correct number in the list (



Data: Username NAME, Password P of length n, Keyboard map M : Keys
→ [0, 255]

Result: Two main hashes and list of (hash / integer list) pairs
begin

S[0]←−SHA3-256(NAME)
for i from 1 to 5 do

S[i]←−SHA3-256(S[i− 1])
P ′ ←−Invert caps lock(P )
H0 ←−Argon2(Concatenate(S[0], P ))
H′0 ←−Argon2(Concatenate(S[0], P ′))
if n < 10 then return (H0, H

′
0) /* Only sending caps lock

for short passwords. */
else while |P | < 16 do P.append(S[0][0])
for i from 1 to n− 1 do

while |Neighbours(P [i])| < MAX NEIGHBOURS do
Neighbours(P [i])←− any k with k > maxl(M(l))

/* Making the neighbours lists have
uniform length by adding dummy characters.

*/
for i from 1 to n− 1 do

Pi ←− P \ {P [i]
⋃
P [i+ 1]}

Hi ←−Argon2(Concatenate(S[1], Pi))
for j from 1 to 4 do

Random bits[j] ←−SHA3-256(Concatenate(Hi + S[j + 1]))
πi,j ←−Brassard(Random bits[j])

LAi ←− [πi,1(M(i)), πi,1(M(SHIFT (P [i])))]
foreach j ∈ Neighbours(P [i]) do

LAi.append(πi,1(M(j))
LAi.sort()
LBi ←− [πi,2(M(i+ 1)), πi,2(M(SHIFT (P [i+ 1])))]
foreach j ∈ Neighbours(P [i+ 1]) do

LBi.append(πi,2(M(j))
LBi.sort()
LCi ←− [πi,3(M(P [i+ 1]))], LDi ←− [πi,4(M(P [i]))]

return (H0, H
′
0, (Hi, LAi, LBi, LCi, LDi)1≤i≤n−1)

Algorithm 3: Key-sending algorithm

≤ 7
255 ).
If we don’t allow double proximity errors, LBi is redundant

with LAi+1, and all single-character typos that are not on
the last letter of the password could be corrected using only
LAi+1. We still include it as it only marginally increases
computing costs client-side and increases communication costs
by at most 19%.

We call Brassard’s algorithm to lazily get the permutation
by computing the image of an element only when it is
needed (instead of computing all images at the initialisation,
e.g. through the Fisher-Yates algorithm [60]). In our case,
we require 8 pseudorandom bits per element. We need the
images of k = |Neighbours(P [i])| random element chosen
uniformly among all possible permutations in a deterministic
way dependent on the seed. Fisher-Yates’ algorithm would
require about 713 random bits if implemented correctly7,
which could be attainable using a longer salt for the seed
(hundreds of bits) and a PRNG with variable output. Using
Brassard’s algorithm [59], we require at most 8 bits per call,
and at most 80 bits in the calls made by the key-sending
algorithm. This allows us to use most PRNG with fixed output
length.

The presence of the full hash H0 is not strictly necessary,
but it allows the server to check if everything is right in one
comparison. An alternative would be to check (H1, L[1]) and
(H2, L[2]), thus detecting the presence of an error, in which

7The information lower bound is 373 bits, but low-efficiency implementa-
tions that require a new random integer at each call would require up to 6400
random bits.

case at least one of the hashes would be incorrect. The other
hashes can be checked lazily if both tests lead to rejection.

IV. SECURITY ANALYSIS

As we seek to improve authentication systems, we have
two goals: preventing people without correct credentials from
logging in, and preventing people with — potentially illegiti-
mate — access to the database from getting the credentials of
other users. This second point is crucial, as credential stuffing
attacks — where an adversary steals a list of login/password
pairs on an unsecured website and tests them systematically
on other websites — are increasingly frequent, with up to 91%
of login attempts coming from credential stuffing, of which on
average 0.50% are successful [61].

A. Preventing access

As we tolerate certain typos, we have an inevitable increase
in the probability of a successful login attempt by an adversary.
Which typos are allowed is then a crucial decision. For
example, allowing single deletions might seem like a good
idea: it corresponds to many typos, and only reduces the
entropy by a limited amount (around 5 bits on average).
However, this would be extremely detrimental in one important
case: partial password re-use. As users become aware of
credential stuffing, some make small variations to prevent
such automated attacks [62], [63]. Accepting deletions makes
such attacks much more likely to succeed, which is why a
substitution — being very similar to a deletion in terms of
security — should only be accepted if the substituted letter is
a neighbour of the original. As long as the adversary follows
the protocol, the security loss entirely comes from the fact
that more passwords are allowed. With a generally lax typo-
tolerance system this means that the set of acceptable strings
goes from 1 to around 100 for a 12-character password8. This
makes bruteforce and dictionary attacks somewhat easier, but
as countermeasures are shifting the online setting away from
those and towards more refined attacks, this should not be
a risk for users with passwords of reasonable strength. Typo
correction also makes it easier to use safer, longer passwords
— which come with a higher risk of typos.

The goal here is to prove that the security loss mostly comes
from the added typos, without creating additional security
risks. In other words, the framework should not reduce the
security much beyond accepting the allowed typos. This is
done by proving the following lemma in which smart brute-
force means that the bruteforce follows the frequent password
list by decreasing frequency.

Lemma 1. Using only the username and knowledge of the
framework, finding a correct authentication message for a
password of length ≤ 16 takes in expectation at least 1

114
times as many queries as a smart bruteforce attack against a
system without typo correction.

8This discounts insertions as the benefit from testing longer passwords is
anecdotal.



Remark 1. Although the bound of 1
114 seems bad, there are

two reasons that explain and compensate for this. The first is
that a query in this system corresponds to a set of queries in a
standard system, so the number of queries naturally goes down
(but the bound on the number of queries accepted by the server
before triggering an alarm should go down accordingly). The
second point is that for this bound to be reached, the bruteforce
algorithm must be able to distribute queries in an optimal way
to make full use of the complex query.

Remark 2. The lemma here could also be applied to pass-
words of length strictly greater than 16, but this is unnecessary
as these passwords are generally not vulnerable to the attacks
considered.

1) Intuition: There are two ways an adversary could obtain
access if they have no prior information besides the username.
The first is to take a set of passwords and send each through the
key-sending algorithm, to gain access with either the password
itself or a version with an allowed typo. The second is to fake
the algorithm’s outputs and send at least partially incorrect
messages to the server, in an attempt to attack the hash directly.

Let’s suppose that an adversary decides to send partially
inauthentic login queries. Each query is composed of a main
hash, and a set of (hash, number lists) pairs. All the hashes
are salted, and the hash space — using for example SHA3-
256 — is much greater than the usual password space. This
means that sending a random string instead of a real hash can
be made to have a lower probability of success (per time unit)
than computing a real password hash. For example, assuming a
very generous bound of 160-bit passwords (uniformly random
password on 20 ASCII characters), it would still take at
least 1026 login queries before having a reasonable chance of
getting a correct hash, evidently costing more than computing
one of the correct hashes9. Taking a more realistic bound on
passwords would only decrease the success probability. As
the limiting factor lies in the number of queries, an adversary
trying to maximise their chance of success would accurately
compute all the hashes in the query.

Because sending random hashes is not efficient, an adver-
sary could instead send the same hash in multiple positions,
with different additional letters each time. This way, they
could cover all possibilities for a single missing letter in only
two or three login queries. The checking system couldn’t
easily prevent this, as common hashes would be possible (for
example, the password ”encoded” has two identical hashes
at the end corresponding to removing either ”de” or ”ed”).
Moreover, n − 1 correct hashes could be computed and then
checked in parallel through interweaving.

This effectively increases the efficiency of an adversary by
testing multiple passwords per login query. The main deterrent
against such attacks is a limit on the number of queries ac-
cepted by the service provider (or rate limiting). As the method
proposed greatly increases the probability of a user logging in

9This assumes that the adversary knows the salt, which is reasonable as it
could, for example, be computed from the login.

successfully when they make a typo, the maximum number of
queries allowed can be reduced accordingly without lowering
the usability. Additionally, one could make a counter for a
given hash to prevent bruteforcing them: if the server receives
a correct partial hash with a wrong additional character, they
could temporarily reject all typoed submissions from the user.
Essentially, this would be equivalent to typo correction on the
first try, and normal password checking on all subsequent tries.

Proof of Lemma 1. Any authentication message that doesn’t
follow the correct structure can be discarded. A message is
deemed correct if at least one of the hashes is correct, and
the corresponding numbers are also correct. A message must
either contain a correct hash/number pair, or a correct number
and a hash collision. As the hash space is much greater than
the space of 16-character passwords, using random hashes to
find collisions has a probability of success so low (< 2−128)
that it is irrelevant. As the checking algorithm prevents timing
attacks, finding the hash by itself is not possible. The adversary
must then have at least one (hash, number list) pair correct.
Every query they make has 18 possibilities of getting an
acceptance: one for the first two hashes, and one for each
of the 16 (hash, number list) pairs. Each query has 7 chances,
hence an upper bound of at most 114 acceptance chances.

B. Obtaining credentials from the database

The second attack can be performed by an adversary with
access to the database and focuses on obtaining correct pairs
of password and email/login credentials for use against other
targets. The goal is then to prove the following lemma:

Lemma 2. Let’s consider an adversary with access to the
usernames, corresponding (password hash, number) lists and
transcripts of successful login interactions. Using generic
attacks, they require at least 1

16 as much computing power
to get a password of length < 16 from a single user as if the
database only stored simple hashes of the passwords without
typo-correction.

Remark 3. Once again, the bound of 1
16 corresponds to

a worst case analysis. Empirical data shows that the real
speedup is close to 1.5.

1) Securing structural information: The first step to prevent
credential theft is to make sure that the database itself doesn’t
give structural information on the passwords through the way it
stores them. For example, storing hash lists of varying lengths
would reveal the length of the stored passwords, indicating to
adversaries the ones that would be easiest to crack.

For the users with passwords of length < 10, exactly two
hashes are stored, and the adversary gains at most a factor
2 in the bruteforcing (less in practice due to non-uniform
distribution). Let’s now consider users with passwords of
lengths ≥ 10.

Deterministically adding extra characters to the end of the
password to reach a common length prevents attacks that
seek to find the easiest passwords to crack. However, we
should avoid compromising users with already long passwords



by imposing length upper limits. Adding characters only if
the passwords are of length less than 16 seems a good
compromise, with only a few passwords standing out from
the database as being extra-hard. Despite the uniformity of the
database, a successful attack could still happen if an adversary
also has access to the messages received by the database. In
messages received, the length of the allowed key list — the
list of numbers — is also important as it can give a lot of
information on the position of the keys on the keyboard. To
avoid this, the framework reserves few numbers on the client-
side reserved for non-existent keys and fills up the neighbour
list with those to prevent this information leak.

2) Cracking the hashes: We are left with the problem of
computing passwords from a set of list of hashes and numbers,
with each list having a single salt. The adversary has three
avenues of attack. The first is by bruteforce: enumerate all
the possible passwords and check when they are correct by
comparing with the recorded hashes. To prevent this attack,
key stretching is central but must be used wisely, to make the
computation of each hash expensive and prevent the adversary
from bruteforcing billions of passwords per second [64].
The second attack uses hashes directly and computes their
preimages. The third attack uses the recorded numbers to get
information on specific letters of the password and simplify
the rest of the work. We will start by the second and third
attacks.

With the second attack, considering each list independently,
finding the preimage of a single hash is enough for the
attacker, as the number of possibilities left for the missing
letter becomes trivial. We are then looking at multi-target
preimage attacks with a promise on the structure of the targets
(that their preimages are close together10). As stated in [65],
however, the resistance of even SHA3-256 against generic
attacks is much stronger than the security requirements for
passwords. This means that the main weakness doesn’t come
from finding the preimage of the password hashes.

When it comes to the third avenue of attack, collisions are
frequent, as opposed to hashes, as the image space of each
permutation is small. If computing the permutations were more
efficient than computing the hashes, it would be possible for
the adversary to eliminate lots of potential passwords quickly.
Two methods can be used to prevent this. The first is to run
the key stretching method on each random bit computation.
The second goes by using the same key stretcher for both
the PRNG and the hashing. This can be done by first using
the key stretcher on PBi, hashing the output with different
salts to get the random permutations and finally the hash
itself. This could slightly affect preimage resistance but makes
bruteforce attacks to find the permuted characters at most
as efficient as the bruteforce attacks against the hash itself.
Indeed, if an adversary wants to eliminate possibilities for the
k-th character, they must compute the permuted character for

10It would be interesting to check whether this kind of promise problem
makes preimage computation any easier, but in any case, they could also be
made irrelevant by the use of different salts for each of the (n−1) password
hashes.

each password, and then eliminate all the impossible ones. If
they don’t run the procedure for the correct password they
can’t reliably eliminate passwords or characters, and if they
do they automatically get the correct hashes (and the answer)
at no additional cost.

3) Bruteforcing the passwords: The main attack left is
then to use bruteforce from the password side, testing every
password until the adversary finds one with the correct hash.
The traditional way to prevent this is to use key stretching
methods such as PBKDF2 [66] — or rather Argon2 [67],
which also has security guarantees against generic attacks.
This is where our frameworks have a security flaw, as we
have at least 16 different hashes instead of one to create and
send the password, but the adversary only has to find one.
Making all of them go through key stretching methods either
takes more time or lowers the number of iterations on each
of them11. Two factors mitigate this flaw: first, even running
a key stretching method for a few milliseconds is enough to
make bruteforce attacks very costly. Assuming we use Argon2
— which prevents efficient large parallelisation — for 2ms on
each hash, cracking a 48-bit password would naively take an
average of sixteen billion seconds, or 544 years, on the same
machine. This does not use the fact that it is enough to guess
one of the hashes containing a typo. Assuming a 5-bit loss
of entropy — which requires a well-optimised bruteforcing
algorithm — the expected time is still more than 17 years.
We simulated the use of this method on the Rockyou leaked
password data-set [68], [69], bruteforcing until we obtained
hashes for the 50% most frequent passwords of length > 10.
The speedup varied depending on which two characters were
removed, as shown in Table III, but stayed below 1.5.

Characters removed none 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9
Unique passwords (×106) 4.40 4.26 4.33 4.29 4.29 4.28 4.26 4.22 4.12 3.96
Proportion for 50% 33.1 29.9 31.4 30.6 30.7 30.4 30.0 29.0 26.7 23.0
Speedup 1 1.11 1.05 1.08 1.08 1.09 1.10 1.14 1.24 1.44

TABLE III
SPEEDUP GAINED FOR DICTIONARY ATTACKS BY REMOVING 2

CHARACTERS FROM ROCKYOU PASSWORDS OF LENGTH > 10. THE FIRST
LINE HAS THE NUMBER OF UNIQUE PASSWORDS (IN MILLIONS), AND THE

SECOND INDICATES THE PROPORTION OF PASSWORDS NEEDED TO GET
THE 50% MOST FREQUENT PASSWORDS IF WE REMOVE THE CHARACTERS

IN THE i-TH POSITION.

As we can see, even among a list notorious for containing
many bad passwords with lots of redundancy, removing two
characters only reduced the average number of hashes to
compute by about 31% when setting the character position in
advance — and dynamically removing the best 2 characters
would improve this by at most a few percentage points. Even
with efficient hardware, the attack would be prohibitively
costly. Moreover, a smart user interface could compute the key
stretching before the user submits the password, recomputing
from scratch each time a new character is typed. This can
guarantee an additional 10ms of free key stretching per hash

11Using a key stretcher on the central salts that are used afterwards by the
rest of the algorithm centralises this proof of work but does not provide any
extra security.



without the user noticing. We can now prove Lemma 2. We
only consider users with passwords at least 10-characters long,
as otherwise the proof is immediate due to the trivial typo
correction.

Proof of Lemma 2. The hashes are all computed with differ-
ent salts, so rainbow tables can’t help, and cracking a single
user’s credentials doesn’t help the attacker with the credentials
of another user. The data under each user is composed of the
same number of hashes and corresponding numbers, except for
the users with increased security, and the transcripts are also
structurally identical, so finding the users with passwords of
lower lengths is as easy as finding out that the last characters
of those passwords are made of padding. Knowing that they
are made of padding requires knowing that they are the image
of a non-existent character, which is equivalent to finding that
they are the image of a given character.

However, finding whether the number stored corresponds to
a given character through bruteforce is not easier than finding
the password itself, as a large set of passwords with different
characters in its stead will yield the correct number. If the
actual password wasn’t in the set tested, the adversary can’t
guess the extracted character with probability much bigger
than uniform, whereas if the correct password was in the set
the adversary already knows a correct hash.

As the preimages under the hashing functions considered are
much harder to compute than bruteforcing from the password
side, and as the additional numbers give no information unless
the adversary knows the rest of the password, the only viable
generic attack goes through bruteforcing from the password
side.

An adversary can then consider one position, ignore the two
letters concerned, and bruteforce all the others. In a best case
scenario, this method could remove close to 14 bits of entropy,
or improve by a factor 15000 the speed of the bruteforce.
However, using NIST estimates [70], at best 4 bits of entropy
would be lost, corresponding to a factor 16 speedup — much
higher than the 45% speedup observed on the data.

V. DISCUSSION AND CONCLUSION

As the overwhelming majority of hashing is done server-
side today, changing the security ecosystem to client-side
would require a relatively large amount of labour. We have
proposed an alternative to the current state-of-the-art with
similar performances, but that only gives a potential solution.
We must then propose three different avenues to ensure that
this framework — or equivalent ones — could see widespread
adoption.

A. A service-centric view

From a service provider point of view, the interest in
switching to client-side hashing are akin to those of switching
to hashing from initially having stored passwords in cleartext,
with a few key differences. The first is that the relative
security gains are weaker, whether in terms of real security
or in terms of public blame if the security is broken. There

is little difference between ”adequate” and ”strong” security
procedures when compared to having ”inadequate” security.
On the other hand, switching to client-side hashing saves
on server costs and code complexity, unlike switching from
cleartext to hashed passwords. Hence, although the costs of
switching are smaller, the benefits are correspondingly weaker.
Moreover, all these are moot points if the incentive structure
stays the same, as even the first switch to hashed passwords
isn’t universal yet.

There is one way to change this incentive structure, by
involving major browser developers. A client-side hashing
detection system could be integrated into a browser, and
give a warning to users when passwords are not handled
correctly. This detection system would of course be imperfect
and let some websites badly handle passwords while not
showing warnings. That said, it could be enough to create
a real cost on the service providers, who might lose users
to security concerns. Ideally, this could happen in a way
similar to what was seen during the switch from HTTP to
HTTPS, by first adding warnings and then blocking service
providers with unsecure practices (unless the user confirms
that they are aware of the risks). Despite the complexity of the
architectural changes required [71], browser warnings changed
the incentives and had a fast and large-scale impact [72], [73].
Finally, convincing one such actor might also probably be
enough for the others to follow suit, as other browsers would
have some pressure to be perceived as secure to the users
as the one displaying the warnings. Adopting some standard
header could also help differentiate between websites with
probably obsolete security practices and the rest, which would
be composed of websites with good security practices and high
quality phishing websites [74].

B. A user-centric view

From the end user’s perspective, the issue is different, as
there is a wide variability of possibilities when it comes to
users’ goals, constraints, and expertise. As long as independent
service providers switch to client-side hashing, the process
is mostly invisible to users12, and should have no negative
effects. User costs would only appear in one of two cases: if
a browser starts implementing warning systems, interrupting
users’ actions, or if a user decides to take matters in their
own hands by using an extension that implements a warning
system. We’ll start by looking at how the second could happen.

a) An extension to warn users: The first and easiest
short term solution is to create a short script — a priori in
the form of a browser extension — to detect whether the
password is sent in cleartext to the service provider. This
script could be based on some of the methods mentioned
earlier, such as detection of the password string in the outgoing
packets, or use of computing resources. It could be displayed
next to the padlock corresponding to HTTPS connections, in

12The only way for it to be visible is if it unduly increases delays by asking
too many rounds of hashing on a low-powered device, but this is a matter
of parameter optimisation where wide margins could be taken by default to
avoid this issue.



the form of a warning in the address bar — or potentially
even more aggressively as a pop-up. The effects on the user
would be partially detrimental as it would distract from their
current task, although it could help some users avoid using
passwords on unsecure websites. The main advantage of this
would however be the incentive structure it would create to
switch systems if widely deployed.

There is one potential drawback of this method in the
form of a privacy risk similar to the one we just started
observing on HTTPS padlocks [75], [76]. If the warning
system shows not only indications of risky websites but also
of safe ones, corrupting the warning system itself becomes
a worthy goal. As such, users could be more easily fooled
by phishing attempts that manage to show good password
security than they would with neither positive nor negative
warnings. That might be less of an issue because, unlike
HTTPS, warning systems for client-side hashing would easily
detect bad practice but struggle to detect truly good practice13,
but still bears keeping in mind.

b) Detecting and hashing passwords on the client:
A more extreme case for more technically inclined — and
concerned — users would be to use a different kind of
extension, as a stopgap measure. Instead of checking whether
the password is sent in cleartext, it would be possible to
automatically detect password fields — as Google Chrome
does — and offer a second field through the extension. After
the user types their password in that second field, the hashed
result could be directly input into the original field. This
bypasses a few issues and adds some level of security, but
would also be harder to optimise than if done natively by the
service provider. One concern then would be that the user’s
password could not be directly used on a different device
without the extension. The website changing its domain name
would also create problems that are harder to address from
this client-centric view.

Those systems can actually have a positive impact on
security as they make long passwords — which are more error-
prone — much more usable, lowering the cost of using highly
secure passwords. The issue with the schemes proposed is that
they are technically complex, which often creates difficulties
in the implementation [31], [32]. As such, we wondered
whether similar performances could be attained with simpler
designs, and how to create a system that increased the usability
even further, while satisfying the following constraints: We
have shown that client-side hashing benefits from multiple
advantages, and that its drawbacks often come from older
constraints and are quickly becoming less relevant. Despite
this, among the most used websites, it is only used today by
Chinese service providers, as part of a larger security suite
common to many of them. After observing the issues caused

13For example, to be sure the password is not sent in cleartext, one would
need to make sure that the password field is accessed exactly once as input
to the hash function, otherwise any reversible function could be used before
transmitting, dodging accusations of cleartext sending. Similarly, the website
could trigger some expensive computation without using it to fool resource
monitors.

by server-side hashing, we provide some ideas to detect such
hashing techniques at a larger scale than what we manually
did. We also propose integrating them into common browsers
to change the incentive structure for developers and companies
involved in the security ecosystem. We finish by offering some
alternatives for end users, such that all solutions mentioned
could be used in parallel.

The changes we propose are minimal and have some self-
perpetuating mechanisms, exactly because expecting a sudden
and non-trivial change from a large security ecosystem would
be idealistic. There are of course alternatives to the solu-
tions proposed, such as Time-based One-time Password algo-
rithms [77], which solve many issues mentioned. The problem,
as with all other security improvements, is getting large actors
to make the requisite changes. A different alternative is to
use password managers — which the hashing extension we
mention imitates in some ways — but this brings us back
to older security models by shifting all costs to the user.
Moreover, password managers still have low penetration on
mobile devices and are not always compatible with all users’
constraints [78].

We see two ways to go further in the direction we explored.
First, it seems wise to investigate whether the increasing
role played by low-power devices in the Internet of Things
could create bottlenecks security-wise. Second, to increase the
amount of hashing time available, one could hash the password
letter by letter, using the lapse between keystrokes to hash what
is available for a set duration and using this as a salt for the
next hash. This is not currently done, and could potentially
create security vulnerabilities, so a thorough cryptanalysis of
this method should be done with the currently used password
hashing functions. On the usability side, there is also the
question of finding an ideal delay to resist parallelised attacks
without creating a time cost for users on lower-end devices.

C. Conclusion

The main contribution of this paper is a typo-correction
system with the following properties:

• It corrects 57.7% of all typos, or 91.2% of acceptable
typos.

• It stores 32 hashes and 90 integers on the server. Using
lazy evaluation — only checking the remaining hashes
when the main one is incorrect — this does not require
any extra computation on the server’s side.

• It requires no additional waiting time for computation
on the user side, as it can run between the moment the
user presses the last key and the moment they submit the
password.

• It creates little extra communication cost as the additional
data can still fit in an average packet (420 bytes for the
numbers, 544 bytes for the hashes), well below the IPv6
MTU [79].

• Assuming optimised code that runs on specialised hard-
ware 15× faster than an average client’s browser’s hash-



ing ability, bruteforcing a single password from the
database still takes more than a year14.

• Faking a correct authentication message is at best 114
times more efficient than normal bruteforce, but this
can be compensated or eliminated by having stricter
constraints on the number and frequency of queries while
still having a positive impact on usability.

When compared to TypTop, the best typo-correction system
today15, it has greater usability — correcting about twice as
many typos — and lowered computing requirements. There
is, however, a cost, in that our security guarantees are slightly
weaker (but not directly comparable as the models are differ-
ent).

Multiple practical improvements could still be added to the
system considered. For example, as the system can detect
typos, it might be interesting to let the user know when they’ve
made one (although this might lower usability). Looking in
another direction, it would be possible to associate given (hash
/ number) pairs with frequencies and allow typos probabilisti-
cally, with the system being more forgiving when the typo is
repeated.

Combining both approaches, if a typo happens with great
frequency, it would be possible for the system to ask if the
user wants to make that their new password. It would also
be possible to use some secret sharing system to combine
the different hashes and simplify the computations, but this
seems to require a challenge system with at least two rounds
of communication.

Naturally the schemes proposed depend on the service
providers’ will to implement them. Thankfully, we can easily
address this. Switching from a system where passwords are
simply hashed requires two things to be changed: the database
must be transformed, and the client’s code must also be made
to compute the new kinds of hashes. The first part is relatively
simple and can be done by adding an extra column that points
to the new complete hashing information and is accessed only
when the main hash is not correct. Each time a user correctly
logs in, the database uses the occasion to add the relevant
data (which is sure to be correct as the main hash matches).
This allows the service provider to maintain compatibility
with a legacy system and lazily upgrade the security of all
users. In the context of long-term maintainability, we focused
on Argon2 SHA-3 as primitive functions. That said, other
cryptographic hash functions and PRNGs could be used if
vulnerabilities were found in the ones mentioned. The main
constraint is that the PRNG should be secure on correlated and
non-uniform inputs. The parameters on Argon2 also require
fine-tuning depending on the assumed client hardware and
the estimated abilities of adversaries, as they create a direct
trade-off between usability (in login delay) and resistance to
credential theft attacks.

14This assumes that the client interface runs fast hashing algorithms, for
example, in a WebAssembly environment, which can have a 20× speedup
over asm.js [80], [81].

15This title of best is easily attributed as the only competitors — to our
knowledge — are previous systems by the same authors.

The client’s code must also be transformed so that it trans-
fers not just the main hash but all the necessary information.
This can be done without requiring redeployment or updating
clients when considering web services. Indeed, the service
provider is also the one providing the Javascript code for
the web page, and can update this centrally without directly
implicating the users.

An important change is that hashes are computed on the
client’s side, but there are nowadays next to no reason to
compute them on the server’s side — unlike two decades ago
when they could be necessary to assure compatibility with
legacy systems.
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