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Abstract

Reliance on technology has diminished our use of men-
tal computation. However, mental computation’s inherent
privacy features are becoming central to new research on
creating more secure and usable passwords than one gets
with approaches such as password managers. This work
empirically studies the validity of cognitive assumptions
relative to mental computation for making codes like pass-
words, using as a starting point password algorithms and
a cost model for mental computation developed by Blum
and Vempala. Through a study on 126 participants, we
refute some of their model's assumptions, and introduce
evidence of behaviours where human computing costs
behave counter-intuitively. We also identify three empiri-
cal questions around symmetry, repeatability, and distri-
bution of costs whose resolution would allow the develop-
ment of more predictive cognitive computation models. This
would then allow the efficient creation of better security al-
gorithms.
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Operation Cost
Access item # 1
Access item # 2
Retrieve pointer
Follow pointer
Reset pointer

- A g a N =

Apply a map

=, + and x #digits
(mod 2,3,4,5,9,10) created
=, + and x 1+#digits
(mod 11) created

Table 1: A summary of Blum and
Vempala’s computational cost
model for passwords includes
short-term memory as a 2-item
stack, and long-term memory as a
set of pointers. Resetting the
pointer means going to either the
start or the end of the relevant
memory item. Operation costs only
apply to single or double digit
numbers. Applying a map generally
corresponds to a letter-to-number
or letter-to-letter map.

Introduction

In a series of papers Blocki, Blum, Datta and Vempala intro-
duced a series of mental algorithms meant to replace pass-
word managers, and also a general model for mental com-
puting [4, 5, 6, 7, 23]. This model featured a stack, a set of
pointers, and costs for basic operations, allowing the formal-
isation of already existing informal algorithms [20]. More al-
gorithms have since extended this research [25], including a
method that produced 42-bit secure independent passwords
in under a minute while avoiding mental arithmetic [3].

The development of new mental algorithms is hampered by
the high cost linked to testing. Each new algorithm (and ev-
ery variant) requires an independent usability study to as-
certain its performances when compared to other solutions.
This would be made easier by having a cost model for men-
tal algorithms that would give the distribution of how time-
intensive it is for individuals. We identify three obstacles
must be overcome to create an accurate cost function C.
Repeatability. We can’t assume that C'(A; A) = 2x C(A) for
an algorithm A, due to both habituation and mental fatigue.
Symmetry. We can’t assume thatthe C(4; B) = C(B; A) =
C(A)+C(B) for the concatenations of two sub-algorithms A
and B, as task switching might create non-symmetric costs.
Average cost versus distribution. C can be highly depen-
dent on the human considered. This is why, assuming there
are clusters of humans with similar performance on similar
problems, a distribution of time (instead of an expected time)
might be obtainable and more informative.

Cognitive science approaches. Some aspects of men-
tal algorithm performance has been studied extensively with
approaches from both psychometry and neuroscience, with
studies on learning and memory abilities for a variety of stim-
uli (such as words, sentences, pictures) [24, 17], mnemon-
ics [2], and comparisons with other primates [18].

A second focus has been the arithmetical capabilities of the
average human, with correlations between arithmetic, algo-
rithmic, and linguistic skill [14, 15]. It also led to the explo-
ration of neurological bases for our representation of num-
bers [1, 9, 12].

Differences between demographic groups have also inspired
extensive studies, especially for arithmetic abilities of peo-
ple with maths anxiety [13], with short-term memory prob-
lems [11], and across cultures [22] and age groups [10].

Blum-Vempala model. Surprisingly little has been done
in the search for a general cost model for human computing
that would accurately predict, quantitatively, the difficulty and
time cost to compute mental algorithms. So far, the main
model used in security was introduced by Blum and Vem-
pala in 2015 [7], and refined in [6]. This model, shown in Ta-
ble 1 was meant to give a rough expectation of time taken but
wasn’t experimentally validated. The authors also insisted
on keeping a low total cost for mental password algorithms;
proposing a maximum cost of 12 as a recommendation to
cap time under 40 seconds, assuming that an average indi-
vidual spends 2 to 3 seconds on a task of cost 1.

The model’s costs might be reasonable, but are its assump-
tions correct? For example, it has no place for queries of
variable complexity (e.g. getting the n-th letter in the alpha-
bet, which seems easier for n = 1 than for n = 13, but
which they assume has a uniform cost). We show here the
early results of a study on 126 participants to expose mech-
anisms involved in creating a cost function for mental algo-
rithms. Among other results, we show that accessing a men-
tal map is far from uniform, with a difference of one order of
magnitude depending on the element accessed. Arithmetic
operations also behave differently, with n 4+ m apparently
costing not 8(log(n) + log(m)) but closer to 8(n + m).



This work is exploratory in nature. While our work confirms
— and refutes — some of the assertions made by the pub-
lished model, its goal is to show the need for and value of
a rigorous and empirically tested model, to avoid statistical
mistakes that can stymie research replication [8].

Design of the experiment
The goal of this study was to give preliminary answers to

some of the following questions and offer insight to researchers

studying and proposing new cognitive algorithms. The main
goals were the following:

» Get baseline time cost distributions for elementary op-
erations considered in a way that allows comparison
between groups and user groups.

» Check whether accessing the n-th element in an array

is done in constant time or not, as asserted by Blocki

et al [4], and check the effects of repeated accesses.

Check whether the costs commute: is it easier to per-

form an addition after a multiplication or the other way

around?

» Check the independence of users’ performance in el-
ementary linguistic and arithmetic tasks. This is espe-
cially relevant for password algorithms as having clus-
ters with different abilities would motivate the need for
a set of tailored algorithms instead of a general one.

Demographics

126 participants’ were recruited through a mix of snowball
sampling on social networks [16] and referral through a web-
site that indexes psychological experiments [19], with data

As the country where the experiment was organised does not have
institutional review boards, we followed the guidelines for human subject
studies enforced in the US as best practices. Participants did not belong
to protected groups, were told they could leave the trial at any time, and
no personal or identifying information was collected besides age and main
language spoken.

from four being discarded as they skipped most of the ques-
tions. As a high number of participants were expected to be
French, two versions of the experiment were developed and
participants could choose their preferred version on the first
page. 85 were native English speakers, 28 were French, and
the rest spoke 10 different languages. Ages went from 15 to
63 with a median at 23 and an average at 27.

Protocol

The participants interacted with the system through a web-
page that recorded their inputs as well as the times to type a
first character and to complete each query. For tasks where
the answer is a number or a word, the measures and com-
parisons were all made on the basis of the first character
typed — to compensate for answers of different lengths among
other things. To attenuate the delay due to reading and un-
derstanding the questions, complex instructions were shown
on an example before the question was asked.

The experiment had 9 sections of varying length:

1. Participants were initially told their rights and asked
basic demographic questions.

2. They were told to learn a four-word sentence, type it,
and type it again at the end of sections 3, 4, and 5.
They were shown their sentence if they made a mis-
take.

3. They were given three single-digit additions, single-
digit multiplications, and double-digit additions. Then
two multiplication on lower double-digit numbers and
four remainders of double-digit numbers divided by 3,5,9
and 11.

4. They had to produce a series of three words start-
ing by t, b and a (three different questions), like tor-
toise, blueberries and Austria. In a between-groups
approach, half were asked for an animal, fruit and coun-
try, while the other half were asked to type in any word



starting by the same letter.

5. They had to give the n-th letter in the alphabet, for four
different letters in a row. They were then asked the re-
ciprocal question, also four times. The numbers were
written with Arabic numerals except for one group for
which they were spelled out. They were then succes-
sively given three words and asked to write the letters
in alphabetical order. Finally, they had to say what was
the n-th month of the year (for two different months),
followed by two reciprocal questions.

6. Participants had to find a given letter in either a sen-
tence on screen — or the one they had memorised —
and write the two letters that followed the given letter.

7. They had to type the words they had chosen earlier.

8. Participants had to apply an arithmetic algorithm (in-
volving additions and multiplications), then a linguistic
algorithm (e.g. finding letters in sentences), and finally
a algorithm mixing both kinds of operations.

9. Finally, participants were asked whether they had used
a pen and paper, and for which tasks.

Between-group design was used in multiple ways in this ex-
periment. One was that sections 3, 4 and 5 were given in a
random order. For most of the questions, participants were
divided into 3 to 5 groups with different but structurally iden-
tical questions given to each group.

For sections 3 and 5, one group was given random numbers
or letters, while the others were given predetermined ques-
tions. This was to ensure that enough data would be col-
lected to establish statistically significant results on certain
properties, while maintaining the possibility that, if enough
people participated, there would be data on more than a few
specific points. For example, in section 3, a quarter of the
participants started with the question "2+2=?", another quar-
ter with "9+8=?", and the rest with random pairs of digits.

Preliminary results

One difference with using these techniques in the wild is that
in the experiment participants had to read the instructions
and assimilate them before performing the trials, adding some
noise to the data. We think this strengthens the results — as
this added noise was not enough to make the effect disap-
pear. As the experiment was online and not in a controlled
environment, we couldn’t prevent people from taking a break
(and some participants did take to a 10 minute break). The p-
values indicated correspond to one way ANOVAs. No signif-
icant effects were observed between the two main language
groups.

Access time in a list

The first main question was the veracity of the constant ac-
cess time in a list assumption in the published model, with
two different tests for this in section 5. Our expectation was
that the first few elements of the list might get accessed in
constant time, with a sub-linear increase until close to the
end of the list, where it would go back down as people chose
to work from the end of the list instead.

This was partially shown to be true: on the first question,
there was no significant difference between asking for the let-
ter "A" or the letter "B", with both average and median times
between 2.6s and 2.9s. However, "D" is quite slower than
"A" (3.4s on average), with p < 0.0003. This difference got
absorbed by the second question with no statistically signifi-
cant differences between "K", "M" and "N" (respectively 8.0,
8.2 and 8.3 seconds on average).

The strongest result came from the third question. All the
users who were asked to give the 13th letter ("M") had previ-
ously had to give the 14th ("N") in the third question, and did
s0 in 2.2s on average. The ones who were previously asked
to give the 14th letter were now asked for the 13th, and did so
in 3.6s on average. Getting the next element in the list is then



much easier than getting the previous one (p < 0.0005). The
speed ratio is at least a factor 1.5, but might even be close
to 3, assuming a 1s reaction delay (reasonable as less than
1% of answers were faster than 1s).

Still on the third question, the participants who had had the
11th letter ("K") and had to give the 18th ("R") afterwards
did not benefit from their previous computations and took an
average of 12.0s. This is confirmed by the fact that getting
the 22nd and 23rd letters in the last question also took 14.0
and 14.6 seconds, with no visible priming effect from what
participants had to answer just before. Although the sam-
ple size for those letters was small, we could still observe
speed increase for the last 3 letters of the alphabet, com-
pared to the 3 preceding characters in the alphabet, sug-
gesting that some people proceeded backwards, with an av-
erage of 10.1s, compared to 14.9s on average for the three
preceding letters (p < 0.05).

Similar results can be shown for character-to-number maps.
For example, giving the number corresponding to "D" took
an average of 4.8s, as opposed to 3.9s for "A" on the first
question, and 7.2s for "K" on the second question (p < 0.03
and p < 104 respectively).

We confirmed those intuitions on month/number queries. When

initially asked for either the first or the fifth month of the
year, participants were much slower in the latter case (2.8s
and 4.6s on average, with medians of 2.4s and 3.8s, p <
0.10~%). In the second question, when asking for the tenth
month, there was no statistical difference between the groups
who had been asked for the first or the fifth previously. The
reciprocal question also featured speed differences, with av-
erages of 2.1s to say that February was the 2nd month, ver-
sus 4.0s for July being the 7th (p < 005).

—— Linear regression X
30 Linear regression only for x+y equal to 19, 92 or 166
————— Linear regression only for x+y not equal to above

Time (seconds)

0 25 50 75 100 125 150 175
Value of x+y

Figure 1: Time taken by participants to compute "x+y" as a
function of the expected value . Two-thirds of the participants were
given the tasks of computing "12+7", "79+87" and "87+5" in
various orders, with the rest having random 2-digit additions (one
of the linear regressions shown focuses on this group, whereas
another ignores it, with little difference in the coefficients). There is
a tendency to increase at least linearly, not the logarithmic growth
in the published model.

Arithmetic operations

We observed a large speed increase between the first and
second question — both being single-digit additions — with
the average time going down from 2.7s to 1.8s (p < 10™%),
which we attribute to switching costs between tasks before
the first question and the first question. Discarding this first
question, we observed no statistical difference between the
cost of doing "2+2" and "4+5" on the second question. How-
ever, we saw a difference between "4+5" and "8+9" (1.9s vs
2.3s, p < 0.05).

The same effect can be seen with multiplication: results with
a single digit were computed faster than ones with double
digits (averages of 1.6s versus 4.8, with p < 2 x 10™%).



Algorithm

Time

Start with 2.

Multiply by 2.

Add 4.
Divide by 4.

8.3s/6.6s

Start with 2.
Add 2.
Add 4.
Divide by 4.

7.7s/7.3s

Start with 2.

Multiply by 2.

Add 4.
Subtract 6.

7.7s/6.4s

Start with 20.

Add 20.
Add 40.
Divide by 4.

11.1s/7.0s

Start with 6.
Add 6.

Add 12.
Divide by 4.

algorithm.

10.0/7.9s

Table 2: Average and median
execution time of each arithmetic

The previous results could be seen as a partial confirmation
of the published model, but detailed analysis and extension
of the addition to 2-digit numbers show that time cost is more
probably linearly dependent on the result, with the spread
increasing with the complexity, as shown in Figure 1.

To test how the operation complexity depended on the con-
text and previous operations, participants had to enter the
result of one of five quasi-equivalent arithmetic algorithms —
going through the same set of numbers with different opera-
tions — shown in Table 2. The first and the third, with their
different operations, had statistically equivalent performance
to the second, but had a much wider spread. All three were
also faster than algorithms 4 and 5 (p < 0.02), which are
based on algorithm 2, except that all values are multiplied by
10 (for #4) or 3 (for #5).

Discussion and future work

Exploring the cognitive issues surrounding security practices
is overdue. This paper presents empirical testing of assump-
tions researchers have made regarding cognitive issues that
arise when mentally creating strings of characters for pass-
words. The results of of our experiments show that what
character you retrieve, what computation you do and how
many of them you do have real impacts on each other.

Some assumptions that led to the creation of the published
model were not validated, most importantly the idea that hu-
mans can assign a map of numbers to letters and use it
quickly as a hash function does not work. Instead, the com-
puting time depends strongly on position; there is a large
difference between going forward or backward in the list,
and there is very limited re-use of already computed ele-
ments. From an ecological standpoint, the published model
assumed that people would have a training period, although
one limited to a few dozen minutes. This is not compatible

with its predictions, as it would either have to compensate
for decades of semi-regular use, or the "time to access" cost
only concerns new maps/functions that people haven’t prac-
tised before. In such a case, it would stand to reason that
most people would get better performances on the functions
on which they are trained since childhood, and one needs to
separate the costs depending on the kind of function. In both
cases, the model requires changes, especially since it was
originally developed for critical algorithms where a factor 2
or 3 in the cost matters a lot in terms of wide-scale human
adoption of the newly developed methods.

This late-breaking work shows some surprising elements.
Besides the very limited re-use of precomputed elements,
operating the algorithm in section 8 with multiples of 10 takes
more time than with multiples of 3 (despite being with dou-
ble digit numbers in both cases). There are also quite a few
questions that will require further analyses: what is the time
cost of memory recall (sections 4 and 7), of letter manipula-
tion (sections 5 and 6), of letter searching in a text (sections
6 and 8), and what additional cost is linked to alternating be-
tween linguistic and arithmetic tasks (section 8).

The goal of this experiment was to underline the questions at
the heart of modelling the cost of human computation, and
to provide an empirical basis for a new, more comprehen-
sive model. Such a model should not only include time costs
(although they are the easiest to measure), but also per-
ceived cost, linked to the complexity and repetitiveness of the
tasks involved. Moreover, just as pre-WW2 cryptosystems
relied on a mix of manual labour and precomputed code-
books [21], new algorithms based on the privacy-enhancing
properties of tool-aided mental computing could form the ba-
sis of new security paradigms.

Funding: this work was supported partly by the french PIA project
“Lorraine Université d’Excellence”, reference ANR-15-IDEX-04-LUE.



REFERENCES

(1]

(2]

[3

[4

5

6

(7

[8

9
[10]

(1]

Mark H. Ashcraft. 1992. Cognitive arithmetic: A review of
data and theory. Cognition 44, 1-2 (1992), 75-106.

Francis S. Bellezza. 1987. Mnemonic Devices and Memory
Schemas. Springer New York, New York, NY, 34—55. DOI:
http://dx.doi.org/10.1007/978-1-4612-4676-3_2

Enka Blanchard, Leila Gabasova, Ted Selker, and Eli
Sennesh. 2019. Cue-Pin-Select, a Secure and Usable Offline
Password Scheme. (2019).
https://hal.archives-ouvertes.fr/hal-01781231

Jeremiah Blocki, Manuel Blum, and Anupam Datta. 2013.
Naturally rehearsing passwords. In International Conference
on the Theory and Application of Cryptology and Information
Security. Springer, 361-380.

Jeremiah Blocki, Manuel Blum, Anupam Datta, and Santosh
Vempala. 2017. Towards Human Computable Passwords. 8th
Innovations in Theoretical Computer Science Conference —
ITCS 2017 (2017).

Manuel Blum and Santosh Vempala. 2017. The Complexity of
Human Computation: A Concrete Model with an Application
to Passwords. CoRR abs/1707.01204 (2017).
http://arxiv.org/abs/1707.01204

Manuel Blum and Santosh Srinivas Vempala. 2015.
Publishable humanly usable secure password creation
schemas.. In 3rd AAAI Conference on Human Computation
and Crowdsourcing.

Denny Borsboom. 2006. The attack of the psychometricians.
Psychometrika 71, 3 (2006), 425.

Brian Butterworth. 1999. The Mathematical Brain. Macmillan.

Brian Butterworth. 2002. Mathematics and the Brain. (2002).
Opening Address to The Mathematical Association.

Brian Butterworth, Lisa Cipolotti, and Elizabeth K.
Warrington. 1996. Short term Memory Impairment and
Arithmetical Ability. The Quarterly Journal of Experimental

[12]

[13]

(14]

(18]

(16]

(17]

(18]

[19]

Psychology Section A 49, 1 (1996), 251—262. DOI:
http://dx.doi.org/10.1080/713755603

Brian Butterworth, Marco Zorzi, Luisa Girelli, and A. R.
Jonckheere. 2001. Storage and retrieval of addition facts:
The role of number comparison. The Quarterly Journal of
Experimental Psychology Section A 54, 4 (2001),
1005-1029. DOI:http://dx.doi.org/10.1080/713756007
PMID: 11765730.

Hyesang Chang, Lisa Sprute, Erin A. Maloney, Sian L.
Beilock, and Marc G. Berman. 2017. Simple arithmetic: not
so simple for highly math anxious individuals. Social cognitive
and affective neuroscience 12, 12 (2017), 1940-1949.

Stanislas Dehaene. 1992. Varieties of numerical abilities.
Cognition 44, 1 (1992), 1-42. DOI:
http://dx.doi.org/https:
//doi.org/10.1016/0010-0277(92)90049-N

Lynn S. Fuchs, Douglas Fuchs, Donald L. Compton, Sarah R.
Powell, Pamela M. Seethaler, Andrea M. Capizzi, Christopher
Schatschneider, and Jack M. Fletcher. 2006. The cognitive
correlates of third-grade skill in arithmetic, algorithmic
computation, and arithmetic word problems. Journal of
Educational Psychology 98, 1 (2006), 29.

Mark S. Handcock and Krista J. Gile. 2011. Comment: On
the concept of snowball sampling. Sociological Methodology
41,1 (2011), 367-371.

Charles Hulme, Steven Roodenrys, Richard Schweickert,
Gordon D. A. Brown, Sarah Martin, and George Stuart. 1997.
Word-frequency effects on short-term memory tasks:
Evidence for a redintegration process in immediate serial
recall. Journal of Experimental Psychology: Learning,
Memory, and Cognition 23, 5 (1997), 1217.

Sana Inoue and Tetsuro Matsuzawa. 2007. Working memory
of numerals in chimpanzees. Current Biology 17, 23 (2007).
DOI:http://dx.doi.org/https:
//doi.org/10.1016/j.cub.2007.10.027

J. H. Krantz. 2019. Psychological research on the net. (2019).
https://psych.hanover.edu/research/exponnet.html


http://dx.doi.org/10.1007/978-1-4612-4676-3_2
https://hal.archives-ouvertes.fr/hal-01781231
http://arxiv.org/abs/1707.01204
http://dx.doi.org/10.1080/713755603
http://dx.doi.org/10.1080/713756007
http://dx.doi.org/https://doi.org/10.1016/0010-0277(92)90049-N
http://dx.doi.org/https://doi.org/10.1016/0010-0277(92)90049-N
http://dx.doi.org/https://doi.org/10.1016/j.cub.2007.10.027
http://dx.doi.org/https://doi.org/10.1016/j.cub.2007.10.027
https://psych.hanover.edu/research/exponnet.html

(20]

[21]

(22]

Kevan Lee. 2014. Four Methods to Create a Secure
Password You'll Actually Remember. (2014).
https://web.archive.org/web/20190123014846/
https://www.lifehacker.com.au/2014/07/four-
methods-to-create-a-secure-password-youll-
actually-remember/ Accessed: 2017-12-18.

Dirk Rijmenants. 2018. Hand Ciphers. (2018). https:
//web.archive.org/web/20190610130334/http://
users.telenet.be/d.rijmenants/en/handciphers.htm

Maja Rodic, Xinlin Zhou, Tatiana Tikhomirova, Wei Wei,
Sergei Malykh, Victoria Ismatulina, Elena Sabirova, Yulia
Davidova, Maria Grazia Tosto, Jean-Pascal Lemelin, and
Yulia Kovas. 2015. Cross-cultural investigation into cognitive
underpinnings of individual differences in early arithmetic.
Developmental Science 18, 1 (2015), 165-174. DOI:
http://dx.doi.org/10.1111/desc.12204

(23]

[24]

[25]

Samira Samadi, Santosh Vempala, and Adam Tauman Kalai.
2018. Usability of Humanly Computable Passwords. In 6th
AAAI Conference on Human Computation and
Crowdsourcing.

Roger N. Shepard. 1967. Recognition memory for words,
sentences, and pictures. Journal of Verbal Learning and
Verbal Behavior 6 (02 1967), 156—163. DOI:
http://dx.doi.org/10.1016/50022-5371(67)80067-7

Weining Yang, Ninghui Li, Omar Chowdhury, Aiping Xiong,
and Robert W. Proctor. 2016. An Empirical Study of
Mnemonic Sentence-based Password Generation Strategies.
In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’16). ACM,
New York, NY, USA, 1216-1229. DOI:
http://dx.doi.org/10.1145/2976749.2978346


https://web.archive.org/web/20190123014846/https://www.lifehacker.com.au/2014/07/four-methods-to-create-a-secure-password-youll-actually-remember/
https://web.archive.org/web/20190123014846/https://www.lifehacker.com.au/2014/07/four-methods-to-create-a-secure-password-youll-actually-remember/
https://web.archive.org/web/20190123014846/https://www.lifehacker.com.au/2014/07/four-methods-to-create-a-secure-password-youll-actually-remember/
https://web.archive.org/web/20190123014846/https://www.lifehacker.com.au/2014/07/four-methods-to-create-a-secure-password-youll-actually-remember/
https://web.archive.org/web/20190610130334/http://users.telenet.be/d.rijmenants/en/handciphers.htm
https://web.archive.org/web/20190610130334/http://users.telenet.be/d.rijmenants/en/handciphers.htm
https://web.archive.org/web/20190610130334/http://users.telenet.be/d.rijmenants/en/handciphers.htm
http://dx.doi.org/10.1111/desc.12204
http://dx.doi.org/10.1016/S0022-5371(67)80067-7
http://dx.doi.org/10.1145/2976749.2978346

	Introduction
	Design of the experiment
	Demographics
	Protocol

	Preliminary results
	Access time in a list
	Arithmetic operations

	Discussion and future work
	REFERENCES 

