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Abstract

This paper presents and evaluates a new security primitive
in the form of non-transferable “visual secrets”, and an ap-
plication at the center of a low-tech visually verifiable board-
room voting system. Visual secrets rely on the pre-semantic
treatment of images in the human brain. After being shown an
image for a limited time, users can recognise it when mixed
in a larger set, but cannot reliably communicate to someone
else exactly how to do so — whether voluntarily or through
coercion.

We report on a usability study on 151 subjects which
showed that they could recognise an image they had pre-
viously seen when shown among 20 similar images with an
accuracy of at least 79% compared with an expected baseline
of 5%. Despite their recognisability, the “secret” images were
hard to describe in unambiguous ways : no assessor managed
to accurately identify the images from the description given
by the subjects.

We then introduce a boardroom voting system based on this
primitive. The voter receives a ballot consisting of a single
picture, votes by folding it horizontally or vertically and casts
it. When all ballots are revealed, the voter can check with a
glance that their ballot is present and folded correctly. This
gives them the opportunity to detect error or fraud without
being able to reveal to others how they voted. The design
makes use of textured paper to provide both accessibility for
the blind and improved usability for all users.
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1 Introduction : defining visual secrets

Researchers in usable security often talk about “something
you are, know or have”. Those secrets are often shareable :
one can give their home keys to a friend, be coerced into
revealing passwords, or even have their biometrics such as
fingerprints stolen [21]. Is it then possible for humans to have
useful secrets that cannot be shared ?

Let us suppose two individuals decide to meet in public and
want to be able to ascertain each other’s identity. However,
they are afraid of one of them being coerced into revealing
the identification mechanism, and being replaced by an ad-
versary. Any passphrase or callsign could be obtained under
coercion and replicated. The problem then is to find a secret
they would recognise but would not be able to share, no matter
the context.

In a formalised version, this problem is not a priori solvable
by independent agents in a classical computing setting. As
Turing Machines can simulate each other, any communication
between agents would be indistinguishable if one agent were
simulated. This is not necessarily true in a quantum setting, as
a non-simulatable protocol could potentially be found, thanks
to the no-cloning theorem — depending on the formalism
used [31].

However, humans are not Turing Machines, and they have
unique abilities. One option is to use something that only
they could do, for example a behavioural biometric. This is
possible in the abstract case, but multiple problems exist with
those, from high error rates to biometric identity theft [8,25].
Moreover, this type of secret can require complex apparatus
to measure.

A second lead is then to use specialised human cognitive
functions. Multiple advances have been made in this direc-
tion over the last decade, mostly in the context of authentica-
tion [10,22]. There have been some measure of success in cre-
ating unshareable secrets in [6], as subjects have no conscious
recollection of them, but the training is time-intensive (at least
30 minutes for one password). One cognitive function of par-
ticular interest to us is linked to image recognition. As has



been demonstrated since the 1960s, humans have an extensive
memory for visual stimuli [18,23,32,34]. This has already
been used as a source of security primitives, for example with
authentication in the case of visual passwords [15], as well as
with various biometric methods [2,36]. Most importantly in
our case, a significant aspect of this image recognition hap-
pens in a pre-semantic and pre-cognitive fashion, requiring
no conscious effort, thanks to specialised neural pathways
in multiple areas of the brain [18,26]. This is related to the
difference between recognition and recall [14]. The mind’s
pre-semantic treatment means that there might be a loss of
information during image recognition. As such, the ability
to recognise an image is not directly related to our mental
description of it, and any description might ignore some key
elements of the picture’.

The approach takes inspiration from both this cognitive sci-
ence research and concepts from zero-knowledge proofs [12].
This pre-semantic treatment is used as a source of secrets that
are recognisable but not shareable, and we call the resulting
primitive a visual secret”. A user with unlimited time and
good eyesight might be able to describe exhaustively each
pixel of an image. However, practical protocols would have
reasonable constraints on the time spent describing images.

These constraints are especially appropriate in our case, as
the first proposed application of visual secrets concerns verifi-
able voting. We propose a low-tech solution to the problem
of boardroom voting. This corresponds to a small group of
participants — e.g., jury members — having to quickly vote
on an issue, generally between two possibilities. In practice,
such votes are often held informally by writing an answer on
a piece of paper, although a variety of electronic and low-tech
options have been proposed [1, 4, 13,24]. The central idea
behind our application is to have a visual secret on each ballot
and to count them publicly. This allows each voter to check
that their ballot is present and counted correctly, but prevents
them from proving to someone else that they voted a certain
way. For this application, two metrics are crucial : a high
short-term recognisability (to find one’s own ballot) and a low
describability (to prevent sharing how one voted).

The first part of this paper explores the viability of this
new approach with a focus on these metrics. We start with
a description of the empirical study and an analysis of its
results. We then introduce the voting protocol, discuss the
results, and conclude.

Main results

This paper features three main contributions :

* visual secrets, a new security primitive ;

I"This principle is already used in police lineups, in which multiple sus-
pects corresponding to the description are shown and where the witness is
supposed to be able to find the one they saw previously.

2Visual secrets are not related to visual cryptography [27,28].

* the results of a usability study on 151 subjects that
demonstrates that visual secrets have both high recognis-
ability and low describability ;

* afirst application of visual secrets in the form of a low-
tech verifiable voting system.

2 Empirical study

The goal of the study was to test the viability of visual secrets
as a security primitive. Subjects were shown pictures and had
to describe them, before having to find their initial pictures
among a larger set. As we conjectured that the recognisability
and describability of the pictures would depend on what they
depict, three different image series (lions, mountains, and
abstract shapes) were included. The study had three main
objectives :

* test the ability of subjects to find their picture (after
spending a few minutes on other tasks) (recognisability) ;

* test the ability to describe their picture accurately and
unambiguously (describability) ;

* if possible, compare the three image series on the previ-
ous two metrics.

The hope was to find at least one image set with high recog-
nisability but a low describability.

2.1 Protocol

The online protocol was split into four sections (illustrated on
figure 1) :

1. A single introductory page informing subjects of their
rights (including the right to quit at any point) and in-
forming them that they would have to confirm at the end
to submit the experimental data. It also asked whether
they had performed or seen someone else perform the
experiment and whether they were on a mobile device.

2. Three pages, with each featuring a picture (one per se-
ries). The instructions were to describe the picture in
at most 10 words to try to make it identifiable among
similar images.

3. Three pairs of pages, with each page featuring 2 rows
of 5 images. Each pair of pages corresponds to a series
of 20 images. These images were randomly distributed
between the two pages, in such a way that all images
were shown exactly once. Subjects were asked to select
an image if they thought it was one they had seen earlier,
and could also select “none”.

4. A conclusion page thanking them for their input, indicat-
ing their scores on the memory phase, and asking them
to confirm the submission of the experimental data.



A/B testing was used to randomly assign the order of the
first two image series (lion and mountain), with the image
recognition order being the same as the presentation order.
The third series was always shown last. The tasks of writing
the second and third images descriptions then served as dis-
tractor tasks in order to limit the effect of short-term memory.
The A/B testing allowed us to measure and compensate the
effects of order and delay — on recognition (which was not
statistically significant).

The experiment was tested with an informal pilot study’
among colleagues before being put online at redacted for
anonymity.
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Figure 1: Diagram of the experimental protocol

3The pilot study data is not included in the analyses as the protocols differ

slightly.

2.2 Measurements

The only two questions not directly relevant to the study were
whether the subjects used a mobile device (as it changed
the image layout), and whether they had participated or seen
someone participate in the study (as it could affect the memo-
risation). Considering the experiment’s statistical power, we
did not expect to be able to distinguish differences in demo-
graphic base performance. Thus, and out of a general concern
over studies featuring irrelevant demographics questions, we
decided to collect as little identifying data as possible — in
accordance with local legislation.

All other recorded data relates to the answers provided to
the questions asked during the study. For each of the three
series of pictures, we recorded :

* the index of the picture assigned to the subject (1 to 20) ;
* the description they gave for it ;

* the list and order of each of the two sets of 10 images
shown ;

* the indices of the pictures they recognised, with a zero
indicating that they chose “none” ;

* how much time they spent on each page.

We also recorded which A/B testing group they were in.

2.3 Image bank

Three series of 20 pictures with three themes : lions, moun-
tains, and abstract shapes were selected for the experiment.
The pictures were either (free of rights) pictures of lions or
mountains, or they were abstract shapes randomly generated
by the authors. The three image series are shown in Figure 2.
Section 6.1 discusses our decision not to include human faces.

2.4 Subjects

Data was collected from September 1st, 2020 to December
31st, 2020. Subjects were recruited through John Krantz’s
Psychological Research on the Net index [19]. A total of 164
subjects participated in the study. All but two of them wrote
their answers in English (with one French and one Spanish).
The median time spent on the experiment was 213 seconds
with a standard deviation of 169s — discounting users who
took a noticeable break (between 20 minutes and 15 hours).

Any subject who had not provided intelligible answers to
the first part of the protocol was removed from the dataset.
This eliminated a total of 13 answers, mostly corresponding
to subjects who had skipped the questions, as well as a few
who wrote descriptions such as “pee” or “po”.This removal
is not targeted towards the worst-performing subjects : of the
13 removed, 6 actually had perfect memorisation scores.
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Figure 2: The three image series used for the experiment.

A total of 4 subjects indicated that they had seen someone
perform the experiment before or had performed it themselves.
We chose to include them as their performances are similar to
the other subjects and as such have little impact on the general
results’.

3 Empirical results

This section features the analyses performed on the data col-
lected, in the goals of estimating the recognisability and the
describability of the different image series. In the goal of
transparency, all the data in this section has already been
put online in a publicly accessible archive at : redacted for
anonymity.

Before detailing the results, we must make a note on statisti-
cal analyses. We were hoping to observe a difference between
the human recognition error rate and a randomised algorithm

— a null hypothesis corresponding to a 5% success rate.

4 Another factor for including them is that it is not evident in which
direction the results would be affected if we excluded them : repetition could
improve the performance, but could also increase the rate of false positive
recognition.

However, we were mostly trying to observe the magnitude
of the effect. To this end, we have more than enough statistical
power as the empirical data (>79% success rates) corresponds
to extremely high values (z-scores >40 for all series, corre-
sponding to p-values < 1073°0). This establishes statistically
that visual secrets are recognisable. However, because the er-
ror rates are all lower than expected, comparing them between
the series is not within the statistical power of the experiment,
and the differences reported in the data should be taken as
means that are not statistically differentiable from one another
due to high variance (hence, no comparisons are made be-
tween the series as they would all have p>0.05). Assuming the
means are accurate, acquiring statistical power for a rigorous
analysis of variance between the image series would have
required more than 1 000 subjects.

3.1 Error types and frequencies

The analyses in this section are split by series (lion, mountain,
and abstract shapes), merging the two groups used in the A/B
testing as an analysis of those showed no difference at all.

We interpret and analyse the answers to the image memori-
sation tests as a two-answer test rather than two independent
tests. The subject succeeds if they get both answers right :
if they manage to both find the image that had been shown
earlier and click “none” on the other test. This allows us to
compare their performance with an equivalent memory-less
algorithm which chooses an image when not primed with
one. Without the two-answer approach, such a memory-less
algorithm on independent tests would skew the results as the
optimal strategy would be to always pick the “none” option,
which is neither useful nor realistic. On two-answer tests, the
memory-less algorithm would have at best a 5% success rate’
(corresponding to picking one image from each set of 20).

The following categorisation of errors was applied to each
two-answer test :

False negative (FN) : the subject answered “none” to
both queries ;

False positive (FP) : the subject correctly found their
picture but also recognised a second picture ;

Single mistake (SM) : the subject correctly answered
“none” to one query but chose the wrong image on the
other query ;

Complex mistake (CM) : the subject had a false positive
on one query and a false negative on the other ;

Double mistake (DM) : the subject chose the wrong
image on one query and had a false positive on the other

query.

SThis corresponds to an optimised memory-less algorithm, with a naive
one having an 0.8% success rate.



Thus, a subject either accurately finds their picture (‘success’)
or commits one of the previous four kinds of errors. The main
subject accuracy performances are indicated in Table | :

Correct FP FN SM+CM+DM
Lion 125 (83%) 12 6 8
Mountain 130 (86%) 8 10 3
Abstract 120 (79%) 12 9 10
Ist image 128 (85%) 9 9 5
2nd image | 127 (84%) 11 7 6

Table 1: Subject accuracy and error types for each series as
well as for the first/second image shown (abstract always
being third).
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Figure 3: Number and types of errors made by the subjects
for the memorisation questions.

Figure 3 above shows the error types and the number of
errors when trying to find a previously seen picture. Among
the 7 people who made three mistakes, one had only false
positives and one had only false negatives. This might be due
to misinterpreting the instructions, an effect also observed and
confirmed when running the pilot version of this experiment
among colleagues.

We computed the error rate independently for each image,
which gave no statistical result. As could be expected, all
the images have statistically similar rates of being chosen
incorrectly, and the ones with a higher proportional error rate
correspond to the ones that were shown the least’ — thus in-
creasing the proportional variance. We also looked at whether
the recognition errors tend to form clusters of related images,
but the corresponding graphs are too sparse to hypothesise
the presence of any definite cluster.

6In practice, no image was misidentified more than 3 times.

3.2 Image describability

To estimate image describability while minimising bias, two
of the authors independently categorised the full list of de-
scriptions subjects wrote about their assigned images, before
comparing with the rest of the data. For each description,
the assessors selected all images that could potentially fit —
without knowing what the correct answer was. One of the
assessors had the instruction to be strict in their estimates,
and the other had the instruction to be lenient’. This provided
upper and lower bounds for multiple metrics.

As can be seen on Figures 4-6, some descriptions provide
no information at all as they potentially correspond to all
images. This is not always related to concision : although
“lion” was the full description given by multiple subjects, some
also provided other non-distinguishing descriptions like “the
lion is the king of the jungle” or “70s, groovy, Brady Bunch,
swirly, woman, colorful” (for the abstract image). We call
these descriptions trivial if they can correspond to any image
— for a given assessor. We discount them in some analyses to
have a more rigorous interpretation of describability®. A few
descriptions resulted in very different assessments, such as
“the lion is focused on something”, where the lenient assessor
selected 17 images whereas the strict assessor selected no
images.
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Figure 4: Distribution of the number of selected images by
the strict and the lenient assessor for the lion series.

7In multiple cases, this meant that some parts of descriptions were ignored
as potentially small mistakes. For example, 18% of subjects describe the
abstract image as having blue among its main colours, although blue is very
rare in the image set, and only twice makes up more than 15% of the image
(when including many shades of blue).

80ur hypothesis was that most users would provide ambiguous descrip-
tions showing the difficulties in sharing their secret. Eliminating the worst
performers imposes a stricter threshold on any subsequent result.
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Figure 5: Distribution of the number of selected images by
the strict and the lenient assessor for the mountain series.
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Figure 6: Distribution of the number of selected images by
the strict and the lenient assessor for the abstract series.

Assessor  Lion Mountain Abstract
All Strict 59% (89) 55% (83) 50% (76)
descriptions  Lenient 85% (129)  78% (118)  76% (115)
Non-trivial Strict 54% (72) 52% (75) 43% (56)
descriptions  Lenient 81% (92) 75% (97) 67% (72)

Table 2: Accuracy of the categorisations by the strict and the
lenient assessors for the three series of images considering
either all descriptions or only non-trivial ones (percentages
with total number in parentheses).

The accuracy of both categorisations (as the fraction of
image selections that included the originally described image)
is shown in Table 2. In the goal of assessing the security of
the images as potential visual secrets, one question is crucial :

can they be accurately and unambiguously described, or in
other words, does a description fits a single image ? Even with
this noisy dataset, there is some evidence that certain unique
elements get picked up by most subjects. Table 3 shows for
each image series and assessor the number of unambiguous
descriptions. It also shows how many of those descriptions
considered unambiguous were in fact attributed to the wrong
image (a low accuracy making the system more secure).

Assessor Lion Mountain  Abstract
Correctly Strict 36 40 35
unambiguous  Lenient 32 23 7
Wrongly Strict 17 16 16
unambiguous  Lenient 8 5 3
Unambiguous  Strict 68% T1% 69%
accuracy Lenient 80% 82% 70%

Table 3: Number of unambiguous identifications by the strict
and the lenient assessors for the three series of images. The
proportion of correct identifications among unambiguous im-
ages is shown on the bottom lines.

Finally, we tried to compute clusters of images likely to be
all selected by either assessor when one of them is described,
therefore indicating images for which it is unlikely that the
subjects provide a description distinguishing one from an-
other. A first step was to find whether certain images often get
confusing descriptions. For example, when faced with descrip-
tions of abstract image #2, the lenient assessor considered that
image #6 was potentially the one being described twice as fre-
quently as image #2. Table 4 shows the number of images for
which the descriptions generally point to a different image.

Most probable Among probable Not probable

Lenient | Strict | Lenient | Strict | Lenient | Strict
Lion 10 12 6 3 4 5
Mountain 8 10 6 4 6 6
Abstract 6 8 6 5 8 7

Table 4: For each series, this table shows the number of im-
ages for which the descriptions tended to correspond to other
images more than their original image. For each image, if
its descriptions most frequently point to itself being selected;
it is counted in “Most probable”. It is counted in “Among
probable” if there are other images as frequently assigned to
its descriptions, and “Not probable” otherwise.

We also computed a full graph for each (assessor, series)
pair. Despite the limited number of descriptions, none of the
graphs are sparse (with 145 to 304 edges out of a maximum
of 484), making them hard to interpret. Figure 7 shows one
such graph (the most legible one, having the least number of
edges). The noisy nature of the dataset limits the interest in
deleting the low-weight edges.
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Figure 7: Graph of the abstract shape descriptions by the strict
assessor. Node size is proportional to how often it was de-
scribed, and edge thickness to the how often a description for
i was interpreted as one for j, with two added nodes ("None"
and "All") to merge trivial descriptions and make the graph
more legible.

Despite the difficulties in handling this noisy quantitative
data, some effects are apparent, and confirmed by qualitative
feedback. For example, the lenient assessor managed to unam-
biguously recognise every description of the #20 lion picture
(and the strict assessor performed almost as well). The pecu-
liarity is that the unique features pointed out by the subjects
varied a lot, e.g. the sleeping/closed-eyed lion or the yellow
flowers. This image was not identified as particularly describ-
able when creating the dataset, so care should be taken when
creating new datasets as empirical validation is crucial.

4 Visually Verified Ballots (VVB)

We now describe a first application of visual secrets in the
form of a low-tech voting system appropriate for boardroom
elections.

4.1 Ballot design

The ballots look and feel like square cards. Just like cards,
one side is left blank — or with a regular symmetrical pat-
tern — and the other has the relevant information. The visual
information is minimal, as it consists of two elements :

¢ A picture from a common set of visual secrets, covering
the whole card ;

» Two orthogonal lines crossing the picture, respectively
labelled with “Vote 1” and “Vote 2”.

This visual information is complemented by tactile infor-
mation in the form of texture — bumps — present on both
ends of each line. This texture corresponds to International
Braille for A/B, with one bump for the first line and two for
the second line”. Care should be taken when applying the tac-
tile patterns'” to avoid the bumps being noticeable from the
other side — as well as to avoid transparency issues. More-
over, ballot should ideally be thinner along the horizontal and
vertical lines to make folding easier. An example of one such
ballot is shown on Figure 8.

Figure 8: Example of a Visually Verified Ballot. Folding along
a line correspond to voting for that option. The embossed
bumps represented under the folding lines help voters keep
track of which line is which.

Visually Verified Ballots should be made available as packs
of 20 to 50 ballots, wrapped and sealed like a playing card
deck''.

4.2 Protocol

The protocol goes as follows :

1. The vote organiser opens a new pack of ballots in front
of all voters ;

2. One ballot is distributed face down to each voter ;

9The fact that it corresponds to Braille is only of limited benefit, as less
than 10% of blind children in the USA are taught to read Braille [30].

10For example, using thick ink instead of mechanical embossing.

nitial estimates show that the cost to manufacture such packs should be
between $0.50 and $1 per pack, using commercial printing services.



3. Each voter lifts up their ballot to privately look at the
image and memorise it ;

4. Each voter rotates their ballot a few times, while keeping
track of its orientation using the bumps ;

5. Each voter folds their ballot along the line of their choice
to select “Vote 17 or “Vote 2” to be on the fold ;

6. The voters cast their ballots in a ballot box or a bag ;

7. The ballot box is upturned and all the ballots are unfolded
on a table in front of all the voters’ eyes ;

8. The vote organiser tallies the votes orally while the vot-
ers check that the ballot featuring their assigned picture
are present with the correct fold ;

9. The vote organiser announces the result and the vote is
over unless someone challenges the result.

5 Security considerations on VVB

Our adversarial model relies on the fact that the context is
an in-person boardroom election. This means that the cost of
being caught is high and that the first priority of the adversary
should be to remain covert and as unsuspected as possible. If
caught, they could be banned and the election would proceed
without them with little delay, as opposed to a large-scale elec-
tion. As done in [4], we assume that the adversary can have
some accomplices, as well as some skills in prestidigitation,
allowing them to dissimulate and manipulate paper ballots in
a discreet way. However, we assume that they cannot convince
or coerce the majority of voters into doing their bidding'”.
The adversary can have any of the following objectives :

1. directly change the outcome of the election ;

2. find out how other people voted ;

3. coerce others into voting for a designated candidate ;

4. cast doubt on the outcome (discreditation attack).

Abstract visual secrets are used for the analyses, as they
are the worst-performing in terms of recognisability and thus
give a lower-bound on the expected performance of the other

image series (as small variations in describability have limited
impact).

12 As many elections use a simple majority, this would make many objec-
tives irrelevant. It also opens multiple new avenues of attack depending on
the degree of control the adversary has on the other voters.

5.1 Changing the outcome

Assuming the ballots are publicly counted, an adversary want-
ing to change the outcome must manage to do at least one of
the followings :

¢ add ballots ;
e remove ballots ;
* replace ballots.

As there are at most a few dozen voters and the vote count-
ing is done in plain view, discreetly adding or removing bal-
lots is not feasible. The goal is then to replace ballots without
voters noticing.

If all voters could recognise their ballot perfectly, there
would be only one way to achieve this : by having one ballot
correspond to multiple voters. This would not be unfeasible
but would require a complex attack with a specially made
pack of visual secrets, the ability to distribute those selectively,
then to remove them from the ballot box before adding other
ballots.

Let’s then consider that voters do not have perfect recall,
but instead have a performance similar to the data from Sec-
tion 3.1. Then changing the fold on a single ballot would get
noticed with at least 79% probability'*. Changing multiple
ballots without anyone noticing would then have an exponen-
tially small probability (in the number of modified ballots).

However, there might also be false positives. Assume that
there are twenty voters with a split vote'*. We would then
expect 2 or 3 voters to be mistaken or confused about their
ballots (but probably not sure of themselves). Having 3 voters
notice errors (and be sure of themselves) would then be a
strong indicator of malfeasance, and would be a probable
outcome even if only a few ballots are replaced.

5.2 Finding out how other people voted

There are four ways to find out how someone voted.

First, one could keep track of which visual secret got to
which voter during distribution — if all the images are known
beforehand. This would require having two identical un-
opened packs of visual secrets, and for the adversary to be
able to impose using one of those packs. Moreover, they
should then control the distribution of the pack of visual se-
crets. Having someone shuffle the pack beforehand would
then address this issue as long as the person shuffling is not
an accomplice. Attacks would still be possible, but would
require technical ability, equipment, and the presence of at
least one accomplice.

]3H0wever, folding a ballot twice would in itself leave marks).

141f the vote was strongly in favour of the adversary’s choice, there would
be no need to cheat, and if was strongly in their disfavour, the following
analyses would give even higher chances of getting caught).



Second, one could make an identifying mark on the back of
certain ballots, observe which voters got them, and then look
for those marks during the count. The difficulty lies in the fact
that all the ballots are observed by all voters. A mark visible
from a distance would have a high chance of being caught
during the counting. A related risk would be for voters to
fold ballots incorrectly in a noticeable fashion, but the folding
lines and the number of voters limit this attack’s feasibility.

Third, one could have another voter discreetly show their
ballot during the voting period (or take a picture with their
phone), as proof that this is their visual secret. However, all
the voters are under high scrutiny as everyone can see each
other. They should only have time to get their ballot, think
briefly, rotate and fold it, and then cast it. As such, showing
one’s ballot to someone else (except maybe one’s immediate
neighbour) would be risky and the culprit could get caught.

Finally, one could ask another voter to describe their bal-
lot. Once the ballots are public, nothing prevents the voter
from lying and describing a different ballot. If they describe
their ballot before the count, they must do so discreetly and
succinctly as they are in the same room with limited time —
also reducing the scalability of such process. However, even
in the best case, no assessor managed to identify accurately
and without ambiguity more than 26% of a series of visual se-
crets from their descriptions'”, limiting the interest of such a
method. Moreover, the subjects were describing their pictures
while being able to observe them, as opposed to describing
from memory, which would further reduce performance.

5.3 Coercing others

The most common way of coercing people into voting for a
designated option is to have a way to find out how they voted.
As per the previous subsection, that should not be doable
except for the voters immediately next to the adversary.

The other standard option is to vote in someone’s stead
and prevent them from reporting it — or to give them an
already filled-out ballot, as with chain voting [17]. Voting
directly in someone else’s stead is impossible in a boardroom.
However, if a bag or an opaque box is used as a ballot box,
one attack could hypothetically be achieved. It would require
the coerced voter to simulate dropping their ballot in the bag
(while keeping it in their hand). The adversary could then
add two ballots simultaneously without alerting anyone. The
difficulty with this attack is that it requires some sleight-of-
hand ability in both the adversary and the coerced voter, and
is irrelevant if the ballot box is transparent.

If they can’t check how people voted or force them to vote
for a given candidate, the coercer cannot enforce their will.

I5The assessors were categorising the descriptions independently, as the
same visual secret could correspond to multiple descriptions. Having the
constraint that there be a matching between the set of secrets and the set of
descriptions would improve the assessor’s performance, but the constraints
would probably still be too weak for the method to be reliable.

5.4 Discrediting the election

A small group of adversaries could falsely claim that their
ballots were modified to create a discreditation attack — pre-
sumably cancelling the vote. This is the case with all verifiable
voting systems in which voters can only detect but not prove
the existence of malfeasance. As such, our system is vulner-
able to this kind of attack. However, as all voters are in the
same room, they can easily start a new election, potentially
changing the people in charge of handling the election or even
using a different system — ideally more secure. This kind
of attack would then mostly delay the election by a small
amount while bringing unwanted attention to the group of
adversaries. Moreover, if the election is to be decided by a
simple majority and a single voter reports irregularities while
the margin is of at least a few votes, the voters could decide
(in advance) to accept the result.

6 Discussion

6.1 Design choices

A central design choice was in the theme selection for the
image series. While people are in general much better at
recognising faces than any other image, we chose to avoid
human faces in this experiment for the following reasons :

» Most humans'® have specialised neural pathways that

react specifically to faces [16,29], which could create
unrepresentative stronger reactions than can be expected
for other images.

Specialised facial processing’s performance depends on
the age, ethnicity, and gender of the face shown to the
subject [39,40] .

» Languages tend to have specialised vocabulary to de-
scribe faces — which is more widely spread than the
technical vocabulary required to describe a mountain —
which could improve the performance on describability.

For these reasons, we chose to use non-primate faces as
they would not trigger human-specific responses [11]. As we
still wanted to compare different types of images for describ-
ability, we settled on animal faces (lions) and natural scenes
(mountains) [7]. For the third series, we wanted to have ab-
stract images as they have the advantage of being easy to
generate automatically — and as we conjectured that they
would be harder to recognise and especially to describe. We
restricted the study to these three series to limit the time spent
by subjects and the drop-out rate.

16This sets aside people with certain neurodivergences and ones suffering
from prosopagnosia, representing a non-negligible subset of the popula-
tion [37,38].



6.2 Limitations of the study

This study has one main limitation. It tested the subjects’
memory only a few minutes after the initial stimulus. Al-
though writing the other descriptions in between provided a
distractor task, the recognisability might still be influenced
by short-term memory effects. The impact of time spent be-
tween the memorisation and the recognition had no evident
(or statistically significant) effect. There was a tendency to
have slightly lower recognition when considering subjects
who had a delay between 3 and 15 minutes, counteracted by
the fact that many of the slowest subjects had perfect scores.

A second limitation is that the subjects were recruited from
one of the major sites that indexes psychological studies on-
line (with around 500 studies hosted each year), which could
have created a recruitment bias. However, previous studies
have shown that the participants from this subject pool tend to
give higher-quality data than users of Mechanical Turk, and
that they cover a wide range of demographics, albeit with a
bias in favour of college-age respondents [20].

A third potential limitation lies in the study’s design as
a web experiment where data is only stored if the user con-
firms at the end. First, this could limit the ecological validity
compared to physically interacting with the pictures in a lab-
oratory experiment with a controlled environment. Second,
we could not measure the drop-out rate, and, more impor-
tantly, the proportion of subjects who dropped out and redid
the experiment. Two factors mitigate this. First, only a few
subjects indicated having performed the experiment or seen
it performed earlier. Second, other studies using the same
source of subjects recorded a limited drop-out rate and next
to no repeating subjects [5].

6.3 Considerations on using VVB in practice

From what we have shown, VVB should be reasonably secure
when used with small groups of voters who can see each
other and who vote rapidly, thus benefiting from the potential
short-term memory advantage. One application that directly
comes to mind is for juries in legal cases. VVB is particularly
suited to this situation for multiple reasons : the set of voters
is small and they do not know or trust each other ; they might
want to organise multiple votes, so each one should take little
time ; they are not expected to be skilled at sleight-of-hand.
As juries are often decided shortly before a case, it is also
hard to train a jury member to perform certain attacks.

One limitation of VVB is that the version shown above
does not allow voters to anonymously abstain but only to
vote between two possibilities. One variant shown in the next
subsection addresses this by extending the ballot to more than
two candidates.

Another limitation of VVB is in its accessibility to blind
voters. As it is designed, blind voters can vote with privacy
and without assistance — unlike in many other voting sys-
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tems. That said, VVB doesn’t let blind voters verify their
ballots'”. This is a limitation of the system, but the security
of blind voters is still assured by the fact that their ballots
are not identifiable. That said, if blind voters are present, care
should be taken during the counting to check that the texture
information corresponds to the written information.

‘We should also warn that as it is, VVB should not be used
for elections with more than a few dozen voters. The ability to
find one’s visual secret has only been tested among 20 images,
and not among a set of 200. It might be possible to generalise
the method to handle more voters, but the viability of visual
secrets in this context has not been tested.

6.4 Refinements on VVB and variants

A first type of modification would be to address the fact that
the VVB shown here only allow binary elections. They are
easily adaptable, however, by using circular ballots or polyg-
onal ballots with 2n sides and n folding lines — one per
candidate — inspired by what was proposed in [4].

There is also the question of the order of candidates on the
ballot, which generally has a non-trivial impact'®. Thanks to
the symmetry and lack of favoured orientation when using
abstract visual secrets, the vertical and horizontal lines are
only identifiable by what is written on them. A quick im-
provement would then be to switch from “Vote 1/2” or “Vote
A/B” to using “Vote 1” on one line and “Vote A” on the other,
although it could confuse some voters'’. A variant useful in
certain cases would also be to have “Yes” and “No”.

If needed, one could refine the ballot design to make them
harder to describe (at the cost of potentially lowering the
recognisability). For example, each ballot could have a thicker
black border on the edges, to limit the possibility of catching
part of someone else’s picture if they bend the ballot. The
visual secret could also be made circular (with a border cover-
ing the rest of the ballot), to make it harder to pinpoint what
is in the corners (which was attempted by some subjects).
A more complex option is to use a border that is randomly
generated in the same style as the general abstract images,
but that is common to all the ballots in a pack. This would
probably strongly increase the number of ambiguous descrip-
tions, but risks having a similarly strong decreasing effect on
the recognisability. Ultimately, a balance needs to be found
between recognisability and describability, upon which it is
hard to conjecture without further user studies.

17To the best of our knowledge, there exists no low-tech verifiable voting
system that is fully accessible to the blind.

18The impact of candidate order has mostly been observed in large-scale
elections where voters are not necessarily familiar with the candidates, and
as such could have lower importance in boardroom settings [35].

190ne small issue is that this is not directly compatible with the texture
bumps as the symbols for 1 and A are identical in Braille, unless the complex
numerical prefix is added.



Finally, there is the question of the scalability. The subjects
in our experiment have shown their ability to remember mul-
tiple images. If we were to use 3 independent visual secrets
on the same ballot, the probability of fraud detection could
potentially reach 99.1% for each ballot (assuming all of the
images are unique). An adversary coercing the subject into
describing their visual secrets would have at best an 1.5%
chance of correctly identifying all the images. This method
requires more investigation, as a partial description could be
enough to identify the voter depending on how the full set
of visual secrets is constructed. Once again, we have balance
problems that require more data to be resolved. That said, if
a variation on the method could handle sets of 1 000 visual
secrets, this kind of vote could happen on a much larger scale,
with the verification happening by precinct, each set of visual
secret being restricted to its precinct.

7 Concluding remarks

This paper introduced a security primitive called visual secrets,
a kind of non-shareable secret that is pure information and
does not depend on possessing an item. Its strength comes
from two properties :

¢ the high recognisability of the pictures, with subjects
having 80%+ chance of recognising their own secret ;

* the difficulty of unambiguously describing the pictures.
No assessor managed to get better than 81% accuracy
on the 15-25% of descriptions which they thought were
unambiguous.

This primitive allows new possibilities in terms of low-tech
protocols that do not require complex sensors. The accuracy
figures mean that the visual secrets could be used as is in
specific contexts, such as the voting protocol we suggest, or
potentially as a replacement for the identifying marks used
in other verifiable voting systems inspired by Ron Rivest’s
ThreeBallot protocol [3,33]. This would lower the probability
of fraud detection from 33% to 28% per ballot, which would
be absorbed by the exponential behaviour when detecting
fraud on multiple ballots. Moreover, the accuracy could be
amplified by the simultaneous use of multiple visual secrets,
as discussed previously.

Outside of voting protocols, visual secrets could also be
used within authentication mechanisms or online commu-
nication protocols. However, this is not trivial as the goals
of visual secrets are quite different from picture passwords,
their closest equivalent, with describability and short-term
memorability being bigger concerns than speed or long-term
memorability. As an authentication mechanism, they are then
probably suited to very specific use cases. We still hope that
this new primitive will inspire the development of systems
with improved security and privacy in many different settings.
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7.1 Future work and open problems

The data in our experiment has already been released publicly,
and there are still a few leads that could be worth investigating
(in an exploratory fashion) :

* Our initial attempts at making clustering analyses did
not give us any strong insights, but variations in memo-
rability between the images within each series could be
compared to a clustering of the descriptions.

* The memorability could be correlated with the time spent
on the image description, and inversely correlated with
the time spent on the description of other images (as they
function as distractor tasks).

* The mobile interface used by 20% of subjects could
have had an impact on performance, compared to a full-
sized computer screen (potentially not because of the
screen but because of how people interacted with the
experiment).

* Describability could vary by subject, with some people
being better at describing everything unambiguously, or
it could mostly depend on the images assigned to the
subjects.

Beyond this work on the dataset, this work raises multiple
questions about refinements and extensions :

* Could the image recognition process be fooled by images
that are very similar, such as iterations on one basis made
using generative adversarial networks [9] ?

* What would the performance become if the image series
were composed of 100 images or more ?

* We did not measure confidence in the subject’s choices
when recognising, but it plays a role in the security as-
pect (in terms of false positives). What would be the
recognition performance if we restricted to subjects who
are sure of their choice ?

¢ Would visual secrets be viable with human faces, and
how would one correct for demographic variation with-
out knowing the subjects or users in advance ?

* How unambiguous would the descriptions be if we asked
the subjects to describe from memory, a few minutes
after viewing their pictures (which is closer to the real-
life coercion scenario) ?

* How unambiguous would they be if we allowed subjects
to view the other pictures ? What if we did so for a
limited time, or only for a fraction of the image set ?
Could an adversary with some information on the image
series create a teachable description method that would
increase describability ?



From a formal standpoint in both classical and quantum
complexity, what constraints would allow non-shareable
secrets ?

How sensitive to environmental conditions is the pro-
cess ? Our study happened in situ, but the images were
presumably shown and recognised with identical screen
settings. Would the performance be affected by the use
of printed images or varying luminosity ?

As relying on sight alone could cause accessibility issues,
would it be possible to create tactile secrets (that could
be also embossed in a ballot) ? Could an auditory equiv-
alent be viable ? What kind of auditory stimulus would
achieve the same recognisability, and would length be a
hindrance as sound is a more linear medium?

Finally, our study of VVB is based on the performance
of the original visual secret user study. A dedicated usabil-
ity study on its performance in real life could reveal new
intuitions and leads for further improvements.
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