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Abstract. This paper presents and evaluates a new security primitive
in the form of non-transferable “visual secrets”. We show how they can
be used in the design of voting systems. More specifically, we introduce a
receipt-free low-tech visually verifiable boardroom voting system which
is built for simplicity and can serve as a teaching tool to introduce people
to verifiable voting.

Visual secrets rely on the pre-semantic treatment of images in the human
brain. After being shown an image for a limited time, users can recognise
it in a larger set (79% recognition compared to an expected baseline of
5%). However, they cannot reliably communicate to someone else ex-
actly how to do so (whether voluntarily or through coercion). Indeed, no
assessor managed to accurately identify the images from the description
given by the subjects.

We then introduce a boardroom voting system based on this primitive.
The voter receives a ballot consisting of a single picture, votes by fold-
ing it horizontally or vertically and casts it. If the voter is coerced into
describing their ballot, several ballots are likely to correspond to the
description. When all ballots are revealed, the voter can check with a
glance that their ballot is present and folded correctly. This gives them
the opportunity to detect error or fraud, although they cannot prove
that fraud happened (the limited dispute resolution mechanism mainly
focuses on incentives). The design makes use of textured paper to provide
both accessibility for the blind and improved usability for all users.

Keywords: Usable security, Boardroom voting, Verifiability, User studies, Cog-
nitive psychology
1 Introduction : defining visual secrets

Despite many advances in verifiable voting over the last 20 years, two problems
are nearly as relevant today as they were then. First, there is limited under-



2 E. Blanchard et al.

standing by the public of both how verification works, and why voting systems
should be verifiable (irrespective of the cost-effectiveness) [9]. Second, the us-
ability costs remain high, both for end-users and administrators, limiting the
number of users who verify their votes [14, 39]. For example, long vote-codes re-
main prevalent, and users can get confused as to their purposes [9]. We initially
sought to improve usability by simplifying those codes or finding equivalent pre-
sentations, and instead found a new security primitive that could have multiple
applications. One such application is the central component of a simple verifiable
voting system meant to introduce users to the concept of verifiable voting.

The secrets employed in usable security often correspond to “something you
are, know or have”. However, most such secrets are shareable : one can give their
home keys to a friend, be coerced into revealing passwords, or even have their
biometrics such as fingerprints stolen [26]. One natural question is then to ask
whether it is possible for humans to have (useful) secrets that cannot be shared ?
In a formal way, the answer seems to be no, but if we set reasonable constraints,
some tentative solutions can be found. One option could be a behavioural bio-
metric, which is possible in the abstract case, but multiple problems exist with
those, from high error rates to biometric identity theft [28,10]. Moreover, this
type of secret can require complex apparatus to measure.

A second lead is then to use specialised human cognitive functions. There have
been some measure of success in creating unshareable secrets in [7], as subjects
have no conscious recollection of them, but the training is time-intensive. One
cognitive function of particular interest to us is linked to image recognition.
As has been demonstrated since the 1960s, humans have an extensive memory
for visual stimuli [35,22]. This has already been used as a source of security
primitives, for example with authentication in the case of visual passwords [18],
as well as with various biometric methods [3,37]. Most importantly in our case,
a significant aspect of this image recognition happens in a pre-semantic and
pre-cognitive fashion, requiring no conscious effort, thanks to specialised neural
pathways in multiple areas of the brain [29, 22]. This is related to the difference
between recognition and recall [17]. The mind’s pre-semantic treatment means
that there might be a loss of information during image recognition. As such, the
ability to recognise an image is not directly related to our mental description of
it, and any description might ignore some key elements of the picture.

Our approach takes inspiration from both this cognitive science research and
concepts from zero-knowledge proofs [15]. This pre-semantic treatment is used
as a source of secrets that are recognisable but not shareable, and we call the
resulting primitive a visual secret (which are not related to visual cryptography
[31,30]). A user with unlimited time and good eyesight might be able to describe
exhaustively each pixel of an image. However, practical protocols would have
reasonable constraints on the time spent describing images.

These constraints are especially appropriate in our case, as the first proposed
application of visual secrets concerns verifiable voting in a boardroom setting.
This corresponds to a small group of participants — e.g., jury members — having
to quickly vote on an issue, generally between two possibilities. In practice,
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such votes are often held informally by writing an answer on a piece of paper.
The assumption that this is secure often relies on the high cost if an attack is
discovered compared to the generally low stakes and some attacks have been
proposed against such systems [5]. For example, an attack that is doable with
little training consists in depositing two papers and drawing back one from the
bag (which statistically gives a single vote advantage to one candidate. Quite
naturally, a variety of options have been proposed that seek to improve on this
naive method [16, 1, 27].

The central idea behind our application is to have a visual secret on each
ballot — but no receipt except for the memory of said visual secret. This allows
each voter to check that their ballot is present and counted correctly, but the
receipt-freeness [21] prevents them from proving to someone else that they voted
a certain way. For this application, two metrics are crucial : a high short-term
recognisability (to find one’s own ballot) and a low describability (several ballots
could correspond to one’s description of one’s own ballot).

Over the next five sections, we first relate the results of a usability study on 151
subjects that demonstrates that visual secrets have both high recognisability and
low describability. We then introduce the ballot design and its security analysis.
Finally we discuss the limitations of our work and conclude with future research
leads.

2 Empirical study

The goal of the study was to test the viability of visual secrets as a security
primitive. Subjects were shown three pictures and had to describe them, before
having to find their initial pictures among sets of 20 similar pictures in random
order. Additional information on the protocol, the results of the study on 151
subjects and statistical analyses (including non-significant tests) are below. In
the goal of transparency, all the corresponding data in this section has already
been put online and is publicly available as an attachment to the Hal version of
this document.

2.1 Image choice

As we conjectured that the recognisability and describability of the pictures
would depend on what they depict, three different image series were included.
While people are in general much better at recognising human faces, we chose
to avoid them as:

— performance varies highly depending on the age, ethnicity, and gender of the
face shown to the subject [40, 41];

— subjects might also have stronger emotional reaction to faces [32,19];

— many languages have specialised vocabulary to describe faces — which is
more widely spread than the technical vocabulary required to describe a
mountain — which could improve the performance on describability;
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Fig. 1. The three image series used for the experiment.

For these reasons, we chose to use non-primate faces as they would not trigger
human-specific responses [13]. For the first two series, we settled on public do-
main images of animal faces (lions) and natural scenes (mountains) [8]. For the
third series, we wanted to have abstract images as they have the advantage of
being easy to generate automatically — and as we conjectured that they would
be harder to recognise and especially to describe. We restricted the study to
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these three series to limit the time spent by subjects and the drop-out rate.
Figure 1 shows the three image series.

2.2 Experimental design

Figure 2 summarises the experimental design. The Basic information included an
introductory page informing subjects of their rights (including the right to quit
at any point) and informing them that they would have to confirm at the end to
submit the experimental data. It also asked whether they had performed or seen
someone else perform the experiment and whether they were on a mobile device
(4 answered yes and we chose to include them as their performances are similar
to the other subjects and as such have little impact on the general results). The
Describe pages showed a picture and asked to describe the picture in at most 10
words to try to make it identifiable among similar images.

Basic information
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Fig. 2. Diagram of the experimental protocol.

A /B testing was used to randomly assign the order of the first two image
series (lion and mountain), with the image recognition order being the same as
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the presentation order. The third series was always shown last. The tasks of
writing the second and third images descriptions then served as distractor tasks
in order to limit the effect of short-term memory. The A/B testing allowed us
to measure and compensate the effects of order and delay on recognition, with
no significant effect observed.

The only two questions not directly relevant to the study were whether the
subjects used a mobile device (as it changed the image layout), and whether they
had participated or seen someone participate in the study (as it could affect the
memorisation). Considering the experiment’s statistical power, we did not expect
to be able to distinguish differences in demographic base performance. Thus, and
out of a general concern over studies featuring irrelevant demographics questions,
we decided to collect as little identifying data as possible — in accordance with
local legislation.

The experiment was first tested with an informal pilot study among colleagues
before being put online at http~://koliaza.com/visualsecrets/. The pilot
study data is not included in the analyses as the protocols differ slightly.

2.3 Subjects

We recruited 164 volunteers through John Krantz’s Psychological Research on
the Net index [23]. No protected demographics were targeted, all the partici-
pants were informed of their rights and could quit at any point they wanted,
no deception was used, and the data was only collected if they confirmed at the
end. Besides the main language spoken (English with two exceptions), no per-
sonal or identifying information was collected. We eliminated subjects who had
not provided intelligible answers when asked to describe pictures, leaving 151
subjects. This removal is not targeted towards the worst-performing subjects :
of the 13 removed, 6 actually had perfect memorisation scores.

2.4 Recognisability

We chose to interpret and analyse the answers to the image memorisation tests
as a two-answer test rather than two independent tests. The subject succeeds
if they get both answers right : if they manage to both find the image that
had been shown earlier and click “none” on the other test. Otherwise they had
false negatives (FN) if they answered “none” twice, false positives (FP) if they
recognised a second picture, and other mistakes (OM) otherwise.

This allows us to compare their performance with an equivalent memory-
less algorithm which chooses an image when not primed with one. Without the
two-answer approach, such a memory-less algorithm on independent tests would
skew the results as the optimal strategy would be to always pick the “none”
option, which is neither useful nor realistic. On two-answer tests, the memory-
less algorithm would have at best a 5% success rate (corresponding to picking
one image from each set of 20). This corresponds to an optimised memory-less
algorithm, with a naive one having an 0.8% success rate.
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As shown in Table 1, subjects could recognise their pictures with high reliabil-
ity (79% to 86% rate). When compared to a null hypothesis of 5% (for optimised
random choice), this is highly significant (z-scores >40 for all series, correspond-
ing to p-values < 1072%Y). However, as the error rates were lower than expected,
comparing them between the series is not within the statistical power of the
experiment, and would have required more than 1 000 subjects assuming similar
values (hence, no comparisons are made between the series as they would all
have p>0.05).

| Correct FP FN OM | Correct FP FN OM
Lion 125 (83%) 12 6 8 1st image (128 (85%) 9 9 5
Mountain|130 (86%) 8 10 3 2nd image|127 (84%) 11 7 6
Abstract {120 (79%) 12 9 10
Table 1. Subject accuracy and error types for each series as well as for the first/second
image shown (abstract always being third). No significant effect was seen between
pictures within series.

Figure 3 shows the error types and the number of errors when trying to find
a previously seen picture. Among the 7 people who made three mistakes, one
had only false positives and one had only false negatives. This might be due
to misinterpreting the instructions, an effect also observed at much higher rates
when running the pilot version of this experiment among colleagues (we clarified
the instructions to address this after the pilot).

100
Hmm Correct
I FPonly
mmm FN only
80 . SM
s CM
Other
60
40
20 I
0 — —
No error 1 error 2 errors 3 errors

Fig. 3. Number and types of errors made by the subjects for the memorisation ques-
tions. Other mistakes are split into SM (FN plus the wrong image), CM (FN + FP),
and others.

We computed the error rate independently for each image, which gave no
statistical result. As could be expected, all the images have statistically simi-
lar rates of being chosen incorrectly, and the ones with a higher proportional
error rate correspond to the ones that were shown the least — thus increasing
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the proportional variance (in practice, no image was misidentified more than 3
times). We also looked at whether the recognition errors tend to form clusters of
related images, but the corresponding graphs are too sparse to hypothesise the
presence of any definite cluster.

2.5 Image describability

Describability To estimate image describability while minimising bias, two
of the authors independently categorised the full list of descriptions subjects
wrote about their assigned images. For each description, the assessors selected
all images that could potentially fit — without knowing what the correct answer
was. One of the assessors had the instruction to be strict in their estimates,
and the other had the instruction to be lenient. In multiple cases, this meant
that some parts of descriptions were ignored as potentially small mistakes. For
example, although blue is very rare in the image set, 18% of subjects describe
the abstract image as having blue among its main colours. This provided upper
and lower bounds for multiple metrics.

Figure 4 shows the number of selected images by each assessor, which shows
that some descriptions provide no information at all as they potentially corre-
spond to all images. This is not always related to concision : although “lion”
was the full description given by multiple subjects, some also provided other
non-distinguishing descriptions like “the lion is the king of the jungle” or “70s,
groovy, Brady Bunch, swirly, woman, colorful” (for the abstract image). We
call these trivial if the assessor selected all images. We discounted them in some
analyses to have a more rigorous interpretation of describability (eliminating the
worst performers imposes a stricter threshold on any subsequent result). The ac-
curacy of both categorisations (as the fraction of image selections that included
the originally described image) is shown in Table 2. A few descriptions resulted
in very different assessments, such as “the lion is focused on something”, where
the lenient assessor selected 17 images whereas the strict assessor selected no
images.

Assessor Lion Mountain Abstract

L Strict  59% (89) 55% (83) 50% (76)

All descriptions Lenient 85% (129) 78% (118) 76% (115)
. . Strict  54% (72) 52% (75) 43% (56)
Non-trivial descriptions ¢ .o 819 (92) 75% (97) 67% (72)

Table 2. Accuracy of the categorisations by the strict and the lenient assessors for
the three series of images considering either all descriptions or only non-trivial ones
(percentages with total number in parentheses).

In the goal of assessing the security of the images as potential visual secrets,
one question is crucial : can they be accurately and unambiguously described,
or in other words, does a description fits a single image ? Even with this noisy
dataset, there is evidence that certain unique elements get picked up by most
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Fig. 4. Distribution of the number of selected images by the strict and the lenient
assessor for the lion (top), mountain (middle) and abstract (bottom) series.
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subjects. Table 3 shows for each image series and assessor the number of unam-
biguous descriptions. It also shows how many of those descriptions considered
unambiguous were in fact attributed to the wrong image (a low accuracy making
the system more secure).

Assessor Lion Mountain Abstract

Correctly unambi  Strict 36 40 35
y una guous Lenient 32 23 o
. Strict 17 16 16
Wrongly unambiguous Lenient 8 5 ;
Strict  68% T1% 69%

Unambiguous accuracy Lenient 80% 82% 70%

Table 3. Number of unambiguous identifications by each assessor for the three series.
The proportion of correct identifications among unambiguous images is shown below.

As shown above, the accuracy is at most 82%, even when restricting ourselves
to when the assessors were sure of their choice. We’ve thus established that visual
secrets are close to our objectives. They are highly recognisable (79-86%) while
being poorly describable. A coercer trying to obtain the secret would then have
succeeded in at most 26% of cases, with an additional 8% of cases where they
would have been (wrongly) sure that they had found the correct secret.

Image clusters One last test we tried was to compute clusters of images likely
to be all selected by either assessor when one of them is described, therefore
indicating images for which it is unlikely that the subjects provide a description
distinguishing one from another. A first step was to find whether certain images
often get confusing descriptions. For example, when faced with descriptions of
abstract image #2, the lenient assessor considered that image #6 was potentially
the one being described twice as frequently as image #2. Table 4 shows the
number of images for which the descriptions generally point to a different image.

Most probable Among probable Not probable
Lenient| Strict |Lenient| Strict |[Lenient|Strict

Lion 10 12 6 3 4 5
Mountain 8 10 6 4 6 6
Abstract 6 8 6 5 8 7

Table 4. For each series, this table shows the number of images for which the descrip-
tions tended to correspond to other images more than their original image. For each
image, if its descriptions most frequently point to itself being selected; it is counted
in “Most probable”. It is counted in “Among probable” if there are other images as
frequently assigned to its descriptions, and “Not probable” otherwise.

We also computed a full graph for each (assessor, series) pair. Despite the
limited number of descriptions, none of the graphs are sparse (with 145 to 304
edges out of a maximum of 484), making them hard to interpret. Figure 5 shows
one such graph (the most legible one, having the least number of edges). The
noisy nature of the dataset limits the interest in deleting the low-weight edges.



Visual Secrets 11

‘ \\.F’,/Z///A\ R

[}
7

\

\\\;m&
NCRARTY
ANy

D
Vo A

ne
V4

Fig. 5. Graph of the abstract shape descriptions by the strict assessor. Edge thickness
is proportional to how often a description for i was interpreted as one for j, with two
added nodes ("None” and ”All”) to merge trivial descriptions and make the graph
more legible. In practice, we can see that the main outgoing edge of node 8 is a loop on
itself, meaning that it was generally well categorised. Conversely, descriptions of image
2 were mostly badly categorised, and often interpreted as corresponding to image 8
(hence the thick edge from 2 to 8).

Despite the difficulties in handling this noisy quantitative data, some effects
are apparent, and confirmed by qualitative feedback from both assessors. For
example, the lenient assessor managed to unambiguously recognise every de-
scription of the #20 lion picture (and the strict assessor performed almost as
well). The peculiarity is that the unique features pointed out by the subjects
varied a lot, e.g. the sleeping/closed-eyed lion or the yellow flowers. This image
was not identified as particularly describable when creating the dataset, so care
should be taken when creating new datasets as empirical validation is crucial.

3 Visually Verifiable Ballots (VVB)

We now describe a first application of visual secrets in the form of a low-tech —
in our case, paper — voting system appropriate for boardroom elections. VVB
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has two central objectives. The first is providing a low-tech system that is not
subject to the attacks mentioned in Section 3.1 below. The second is to provide a
cheap' teaching tool that is easy to use and can introduce users to the concepts
of verifiable voting (before moving on to more secure and complex systems such
as Belenios [11]).

3.1 Threat model

One issue with the common kind of boardroom voting is that it is hard to
estimate the prevalence of errors and fraud, which can be high in corporate
settings [2]. The traditional “handwritten vote on a piece of paper in a bag”
method has multiple flaws. It makes it possible to leave identifying marks or
simply to recognise someone’s writing, and an adversary with some limited skill
in prestidigitation could steal a ballot or two from the bag when casting their
own ballots (which can be prevented by having a transparent urn, but this is
rarely done). One advantage, however, is they are generally in-person boardroom
election. This means that the cost of being caught is high and that the first
priority of the adversary should be to remain covert and as unsuspected as
possible. If caught, they could be banned and the election would proceed without
them with little delay, as opposed to a large-scale election.

As done in [5], we assume that the adversary can have some accomplices, as
well as some skills in prestidigitation, allowing them to dissimulate and manip-
ulate paper ballots in a discreet way. They can also try to coerce other voters
but not cannot do so publicly — hence the interest of receipt-freeness for po-
tentially coercible voters. Moreover, we assume that they cannot convince or
coerce the majority of voters into doing their bidding. As many elections use a
simple majority, this would make many objectives irrelevant. It also opens mul-
tiple new avenues of attack depending on the degree of control the adversary has
on the other voters. We also assume that they do not have access to high-tech
systems (such as hidden cameras in the room), except for common items (such
as smartphones). We consider an adversary with the following four potential
objectives :

directly change the outcome of the election ;

find out how other people voted ;

coerce others (or pay them) into voting for a designated candidate ;
cast doubt on the outcome (discreditation attack).

Ll S

3.2 Ballot design

Visually Verifiable Ballots look and feel like square cards ( an example is shown
on Figure 6). Just like cards, one side is left blank — or with a regular symmetri-

! Visually Verifiable Ballots could be made available as packs of 20 to 50 ballots,
wrapped and sealed like a playing card deck. Initial estimates show that the cost to
manufacture such packs should be between $0.50 and $1 per pack, using commercial
printing services.
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cal pattern — and the other has the relevant information. The visual information
is minimal, as it consists of two elements :

— A picture from a common set of visual secrets, covering the whole card ;
— Two orthogonal lines crossing the picture, labelled “Vote 1” and “Vote 27

This visual information is complemented by tactile information in the form of
texture — bumps — present on both ends of each line, with one bump for the first
and two for the second?. This has two objectives. First, it allows voters to keep
track of the ballot’s orientation without seeing the lines. Second, it also makes it
possible for visually impaired people to vote without requiring a different voting
system (although they would not be able to verify). Care should be taken when
applying the tactile patterns (for example, using thick ink instead of mechanical
embossing) to avoid the bumps being noticeable from the other side — as well
as to avoid transparency issues.

Fig. 6. Example of a Visually Verifiable Ballot. Folding along a line correspond to
voting for that option. The embossed bumps represented under the folding lines help
voters keep track of which line is which.

3.3 Protocol
The protocol goes as follows :

The vote organiser opens a new pack of ballots in front of all voters ;

One ballot is distributed face down to each voter ;

Each voter lifts up their ballot to look at the image and memorise it ;
Each voter rotates their ballot a few times, while keeping track of its orien-
tation using the bumps ;

5. Each voter folds their ballot along the line of their choice to select “Vote
17 or “Vote 2” to be on the inside fold, without marking or modifying their
ballot in any other way ;

=W o=

2 This coincidentally corresponds to International Braille for A/B, which is only of
limited benefit, as Braille teaching becomes increasingly rare [33].
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6. The voters cast their ballots in a ballot box or a bag ;

7. The ballot box is upturned and all the ballots are unfolded on a table in
front of all the voters’ eyes ;

8. The vote organiser tallies the votes orally while the voters check that the
ballot featuring their assigned picture are present with the correct fold ;

9. If a voter sees their ballot folded the wrong way or cannot find their ballot,
they announce as much without giving any additional information ;

10. The vote organiser announces the result and the vote is over unless someone

challenges the result.

4 Security considerations on VVB

This section shows how VVB addresses the four attacks mentioned in Section 3.1.
We focus on abstract visual secrets for the analyses, as they are the worst-
performing in terms of recognisability and thus give a lower-bound on the ex-
pected performance of the other image series (as small variations in describability
have limited impact). The next two subsections assume that the voter is not an
accomplice or being coerced by the adversary — which will be covered in the
following subsections.

4.1 Changing the outcome

Assuming the ballots are publicly counted, an adversary wanting to change the
outcome must manage to do at least one of the followings :

— add ballots ;
— remove ballots ;
— replace ballots.

As there are at most a few dozen voters and the vote counting is done in plain
view, adding or removing ballots at any point would introduce discrepancies.
The goal is then to replace ballots without voters noticing.

As long as voters check their ballots, the only way to replace ballots without
being noticed is for a single ballot to be recognised by multiple voters. This could
be achieved thanks to a complex attack with a specially made pack of visual
secrets, the ability to distribute those selectively, then to remove them from the
ballot box before adding other ballots. Let’s consider that the adversary does
not resort to such an attack and the voters’ recall ability is standard according
to our experiment. Then changing the fold on a single ballot or replacing it by a
different ballot would get noticed with at least 79% probability (however, folding
a ballot twice would in itself leave marks). Changing multiple ballots without
anyone noticing would then have an exponentially smaller probability (in the
number of modified ballots).

However, there might also be false positives. Assume that there are twenty
voters with a split vote3. We would then expect 2 or 3 voters to be mistaken

3 If the vote was strongly in favour of the adversary’s choice, there would be no need
to cheat, and if it was strongly in their disfavour, the following analyses would give
even higher chances of getting caught).
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or confused about their ballots (but probably not sure of themselves). Having 3
voters notice errors (and be sure of themselves) would then be a strong indicator
of malfeasance, and would be a probable outcome even if only a few ballots are
replaced.

4.2 Finding out how other people voted

If the adversary can see the front of the ballot (including the visual secret), they
could remember it and check during the tally. However, each ballot is distributed
face down, and each voter should be careful to prevent the front of their ballot
from being seen by anyone else. In any case, viewing the front of ballot of another
voter is mostly doable by adversaries sitting next to them. Let us now suppose
that the adversary can only see the back of the ballot and not the front until all
ballots are revealed during step 7.

If an adversary manages to find out how someone voted, they necessarily learn
this information at the earliest when the voter folds their ballot, that is, during
step 5 of the protocol. We consider steps 5 to 9, and list the means implemented
in the protocol to prevent any adversary from learning how other people voted
during these steps.

We start with step 5. Finding out how another person voted is equivalent to
finding out whether the fold is vertical or horizontal (with respect to their ballot).
Either the adversary knows the initial orientation (before the ballot is given to
the voter) or they do not. If they do, in order to use this initial information,
they should also keep track of the rotations, which requires visual acuity and
would be hindered by some voter actions (e.g., rotating their ballot under their
hands). Otherwise, figuring out the orientation of the ballot is hindered by the
symmetry of the back of the ballot. Having an identifying mark on the back of
the ballot that would be visible from a distance would allow to overcome this
symmetry but would be noticeable — if not necessarily noticed — by both the
voter and other people in the room.

During step 6, when the ballots are cast, the fronts of the ballots are at least
mostly hidden thanks to the fold performed during step 5. The difficulty to see
other people’s ballot introduced by the fold of step 5 could be strengthened as
discussed in Section 5.3 by adding a thicker black border on the edges.

We now consider step 7, when all ballots are revealed. Let us first assume that
the adversary has prior knowledge of the set of visual secrets being used. A first
option would then be to keep track of which b