Progressive metaheuristics for high-dimensional radiative transfer model inversion Application to New Horizons LEISA data

Leila Gabasova¹ Nicolas K. Blanchard² Bernard Schmitt¹ Will Grundy³ New Horizons COMP team

¹Université Grenoble Alpes, CNRS, IPAG, Grenoble, France

²IRIF, Université Paris-Diderot, Paris, France

³Lowell Observatory, Flagstaff AZ, USA

European Planetary Science Congress

19 September 2018

Figure: Local average reflectance factor spectra of the surface of Pluto extracted for a few typical regions (Schmitt et al., 2017)

New Horizons LEISA hyperspectral data:

- Complex spectra showing the presence of many components (CH₄, N₂, CO, H₂O, organics...)
- Qualitative maps from PCA and integrated band depths
- Real abundances and proportions?

Figure: Schematic representation of the various materials present on Pluto and their possible mixing states (Schmitt et al., 2017)

- 6 components with corresponding grain sizes
- 4 mixing modes (areal, vertical, granular, molecular)

\hookrightarrow approx. 45-dimensional problem

• A quantitative map has been made using a simplified 8-dimensional model (Protopapa et al., 2017), but a more accurate map cannot be produced with the same methods

Search strategies

- Lowest-resolution exhaustive computation time of all the spectra = 1500 years on 1000-core cluster
- Simple iterative optimization e.g. gradient descent not possible: too many local minima

What are metaheuristics?

High-level heuristics designed to find a sufficiently good global solution to a complex problem.

Simulated annealing

An algorithm inspired by annealing in metallurgy, which combines gradient descent with stochastic perturbations (slowly decreasing in probability over time) to escape local minima.

Figure: Schema showing the concept behind simulated annealing (Ghasemalizadeh et al., 2016)

Classic probability acceptance function:
$$P = \exp\left(-rac{\mathsf{new}\;\mathsf{err}-\mathsf{old}\;\mathsf{err}}{T}
ight)$$

Complications inherent to this problem:

- Magnitude of effect on spectrum varies between parameters \rightarrow finer-scale optimization gets lost amid big shifts
- Complex interplay and "ruggedness" of parameter landscape \rightarrow lots of local minima/"false positives"

Solutions:

- Common-sense constraints on parameter space, e.g. number of simultaneous components
- Fit the derivative of the spectrum
- Sort the parameters by magnitude of effect, and optimize in that order

15 dimensions (neglecting areal and vertical mixing), 2 simultaneous components out of 6 3 fitting phases:

- 1. Fit the derivative of the spectrum
- 2. Fit only the strong-magnitude parameters
- 3. Fit only the weak-magnitude parameters

Iteration: Algorithm is run for a time *t* for all possible pairs of components; the ones with a low RMSE are kept for the next iteration. *t* increases exponentially as we iterate.

- Naïve fitting, with all components permitted simultaneously, frequently converges to incorrect results
- The progressive 3-phase fitting algorithm is much more efficient at finding the correct components than unsorted fitting: the correct set is found within 1-3 iterations
- In testing, a good spectral fit is obtained in under 24 hours on a laptop

Figure: Simulated annealing fit of synthetic two-component mix after 20 hours

RMSE=0.24%

Granular two-component mix

	Composition	Proportion	Grain size	g	
		TARGET			
1	Pure CO	87.4%	53 mm	0.033	
2	N ₂ -rich ice + dilute CH ₄ (1%) + dilute CO (3%)	12.6%	11 mm	0.033	
	BEST FIT				
1	Pure CO	85%	95 mm	0.033	
2	N ₂ -rich ice + dilute CH ₄ (1%) + dilute CO (1%)	15%	26 mm	0.033	

Figure: SA fit of LEISA North Pole data (potential CH₄-rich endmember)

RMSE=7%

Areal two-component mix

	Composition	Proportion	Grain size	g
1	Pure CH ₄	72%	2.7 mm	0.734
2	N ₂ -rich ice + dilute CH ₄ (5%)	28%	0.6 mm	0.734

- Metaheuristics in general, and simulated annealing in particular, are an extremely promising tool for high-dimensional inverse problems such as modeling complex spectra
- The multiplicity of solutions means common-sense constraints need to be applied

Future work:

- Add dynamic differentiation between 1, 2 or 3 components
- Add areal and vertical mixing
- Progressively build up a compositional map, using spatial continuity to constrain the model complexity for individual pixels